import os import pickle import torch from mamba_lm import MambaLMConfig, from_pretrained from mamba_ssm import MambaLMHeadModel from contextlib import nullcontext import numpy as np from functools import partial import chess from sklearn.linear_model import LinearRegression import torch.nn as nn import torch.optim as optim import wandb import math import json BASE_DIR = "mamba/" class MambaPlayer: def __init__(self, model_name: str, move_num_in_gamestate: bool=False, update_contrastive: bool=False, update_linear: bool=False, linear_probe_path: str=None): self.model_name = model_name self.move_num_in_gamestate = move_num_in_gamestate # ----------------------------------------------------------------------------- init_from = "resume" # either 'resume' or a Mamba variant (e.g. 'state-spaces/mamba-1.4b') out_dir = "out" # ignored if init_from is not 'resume' device = "cuda" if torch.cuda.is_available() else "cpu" #device = "cpu" dtype = 'bfloat16' if torch.cuda.is_bf16_supported() else 'float32' seed = 1337 compile = False # set to True if using PyTorch 2.0 and Mamba supports it # ----------------------------------------------------------------------------- torch.manual_seed(seed) torch.cuda.manual_seed(seed) device_type = ( "cuda" if "cuda" in device else "cpu" ) # for later use in torch.autocast ptdtype = { "float32": torch.float32, "bfloat16": torch.bfloat16, "float16": torch.float16, }[dtype] ctx = ( nullcontext() if device_type == "cpu" else torch.amp.autocast(device_type=device_type, dtype=ptdtype) ) # Model initialization if init_from == "resume": #ckpt_path = os.path.join(BASE_DIR, out_dir, self.model_name) ckpt_path = os.path.normpath(f"../chess-mamba-vs-xformer/out/Mamba/{self.model_name}") checkpoint = torch.load(ckpt_path, map_location=device) model_config = checkpoint["model_args"] model = MambaLMHeadModel(model_config) model.load_state_dict(checkpoint['model']) elif init_from.startswith('state-spaces'): model = from_pretrained(init_from).to(device) else: raise ValueError("Invalid init_from value") model.eval() model.to(device) if compile and hasattr(torch, 'compile'): model = torch.compile(model) # look for the meta pickle in case it is available in the dataset folder meta_path = os.path.join(BASE_DIR, "out", "meta.pkl") load_meta = os.path.exists(meta_path) if move_num_in_gamestate and load_meta: with open(meta_path, "rb") as f: meta = pickle.load(f) stoi, itos = meta["stoi"], meta["itos"] vocab_size = meta['vocab_size'] encode = lambda s: [stoi[c] for c in s] decode = lambda l: "".join([itos[i] for i in l]) else: stoi = {' ': 0, '.': 1, 'a': 2, 'b': 3, 'c': 4, 'd': 5, 'e': 6, 'f': 7, 'g': 8, 'h': 9, '1': 10, '2': 11, '3': 12, '4': 13, '5': 14, '6': 15, '7': 16, '8': 17, 'B': 18, 'N': 19, 'R': 20, 'Q': 21, 'K': 22, 'O': 23, 'x': 24, '+': 25, '#': 26, '=': 27} itos = {0: ' ', 1: '.', 2: 'a', 3: 'b', 4: 'c', 5: 'd', 6: 'e', 7: 'f', 8: 'g', 9: 'h', 10: '1', 11: '2', 12: '3', 13: '4', 14: '5', 15: '6', 16: '7', 17: '8', 18: 'B', 19: 'N', 20: 'R', 21: 'Q', 22: 'K', 23: 'O', 24: 'x', 25: '+', 26: '#', 27: '='} for s in stoi: assert itos[stoi[s]] == s vocab_size = len(stoi) print(f"Vocab size {vocab_size}") encode = lambda s: [stoi[c] for c in s.replace('-', '')] decode = lambda l: "".join([itos[i] for i in l if i < vocab_size]).replace("OOO", "O-O-O").replace("OO", "O-O") self.vocab_size = vocab_size self.encode = encode self.decode = decode self.space_tok = encode(' ')[0] self.dot_tok = encode('.')[0] self.model = model self.ctx = ctx self.device = device self.move_num = 0 self.hooks = [] self.max_seq_len = 1536 #self.move_buckets = [10, 20, 30, 40, float('inf')] self.move_buckets = [float('inf')] if update_contrastive or update_linear: self.activations_sum = {} self.activations_count = {} if update_linear: if linear_probe_path and os.path.exists(linear_probe_path): self.linear_probes = torch.load(linear_probe_path) else: self.linear_probes = {} if update_contrastive or update_linear: linear_size = self.model.config.d_model * 8 #self.model.config.d_model * self.max_seq_len for i, layer in enumerate(self.model.backbone.layers): self.activations_sum[i] = {bucket: {"won": np.zeros((1, 8, self.model.config.d_model)), "lost": np.zeros((1, 8, self.model.config.d_model)), "current": np.zeros((1, 8, self.model.config.d_model))} for bucket in self.move_buckets} self.activations_count[i] = {bucket: {"won": 0, "lost": 0, "current": 0} for bucket in self.move_buckets} def hook(module, input, output, layer_idx=i): if isinstance(output, tuple): tensor_output = output[0] else: tensor_output = output seq_len = tensor_output.shape[1] bucket = next(b for b in self.move_buckets if self.move_num <= b) self.activations_sum[layer_idx][bucket]["current"][:, :min(8, self.seq_len), :] += tensor_output.detach().cpu().numpy()[:, :self.seq_len, :][:, -8:, :] self.activations_count[layer_idx][bucket]["current"] += 1 self.hooks.append(layer.register_forward_hook(hook)) if update_linear: if not linear_probe_path or not os.path.exists(linear_probe_path): self.linear_probes[i] = { 'q_value': nn.Linear(linear_size, 1), 'q_value_delta': nn.Linear(linear_size, 1), 'material_balance': nn.Linear(linear_size, 1) } if update_linear: self.linear_probe_targets = {i: {bucket: {'q_value': [], 'q_value_delta': [], 'material_balance': []} for bucket in self.move_buckets} for i in self.linear_probes} self.linear_optimizers = { layer_idx: { probe_type: optim.Adam(self.linear_probes[layer_idx][probe_type].parameters(), lr=0.01) for probe_type in ['q_value', 'q_value_delta', 'material_balance'] } for layer_idx in self.linear_probes } wandb.init(project="mamba_linear_probes", name=f"mamba_linear_probes") self.wandb_step = 0 self.linear_save_ct = 0 def get_mamba_response(self, game_state: str, temperature: float, max_new_tokens: int, top_k: int): game_state = game_state.split("\n\n")[-1].strip() #game_state = ";" + game_state # Tokenize the game state encoded_prompt = self.encode(game_state) input_ids = torch.tensor([encoded_prompt], dtype=torch.long, device=self.device) self.seq_len = input_ids[0].size(dim=0) self.model.eval() # Set the model to evaluation mode with torch.no_grad(): have_non_space = False for _ in range(max_new_tokens): logits = self.model(input_ids).logits[0, -1, :] # Get logits for the last token # Apply temperature scaling and optionally sample from top k tokens logits = logits / temperature if top_k > 0: indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, None] logits[indices_to_remove] = -float('Inf') probs = torch.nn.functional.softmax(logits, dim=-1) probs = torch.clamp(probs, min=1e-6, max=1.0) probs = probs / probs.sum() try: next_token_id = torch.multinomial(probs, num_samples=1) except: return None if next_token_id == self.space_tok or next_token_id==self.dot_tok: if have_non_space: break else: have_non_space = True input_ids = torch.cat([input_ids, next_token_id.unsqueeze(0)], dim=1) self.seq_len += 1 model_response = self.decode(input_ids[0].tolist()) model_response = model_response[len(game_state):].split(";")[0] return model_response #def encode(self, text: str): # Implement the appropriate tokenization for MambaLM # This could be a simple mapping or a more complex tokenizer # return [stoi[char] for char in text] # Example #def decode(self, token_ids: list): # Implement the appropriate decoding for MambaLM # return ''.join([itos[id] for id in token_ids]) # Example def get_move_from_response(self, response: str) -> str: if not response or len(response) == 0: return None # Parse the response to get only the first move try: moves = response.split() first_move = moves[0] first_move = first_move.lstrip('.') # A patch for a weird phase during training ... doesn't seem to be an issue anymore, but don't see the harm. return first_move except: return None def get_move(self, board: chess.Board, game_state: str, temperature: float) -> str: self.move_num = game_state.count('.') completion = self.get_mamba_response(game_state, temperature, 8, self.vocab_size) return self.get_move_from_response(completion) def get_config(self) -> dict: return {"model": self.model_name} def update_activations(self, result): for layer_idx in self.activations_sum: if result == "reset": self.activations_sum[layer_idx] = {bucket: {"won": np.zeros((1, 8, self.model.config.d_model)), "lost": np.zeros((1, 8, self.model.config.d_model)), "current": np.zeros((1, 8, self.model.config.d_model))} for bucket in self.move_buckets} self.activations_count[layer_idx] = {bucket: {"won": 0, "lost": 0, "current": 0} for bucket in self.move_buckets} else: for bucket in self.move_buckets: self.activations_sum[layer_idx][bucket][result] += self.activations_sum[layer_idx][bucket]["current"] self.activations_count[layer_idx][bucket][result] += 1 def save_activations(self, path): if os.path.exists(path): with open(path, "rb") as f: activations_sum, activations_count = pickle.load(f) else: activations_sum = {} activations_count = {} for layer_idx in self.activations_sum: for bucket in self.move_buckets: if self.activations_count[layer_idx][bucket]["current"] == 0: continue if layer_idx not in activations_sum: activations_sum[layer_idx] = {} activations_count[layer_idx] = {} if bucket not in activations_sum[layer_idx]: activations_sum[layer_idx][bucket] = {} activations_count[layer_idx][bucket] = {} for category in ["won", "lost"]: if category not in activations_sum[layer_idx][bucket]: activations_sum[layer_idx][bucket][category] = np.zeros((1, 8, self.model.config.d_model)) activations_count[layer_idx][bucket][category] = 0 activations_sum[layer_idx][bucket][category] += self.activations_sum[layer_idx][bucket][category] activations_count[layer_idx][bucket][category] += self.activations_count[layer_idx][bucket][category] with open(path, "wb") as f: pickle.dump((activations_sum, activations_count), f) for layer_idx in self.activations_sum: self.activations_sum[layer_idx] = {bucket: {"won": np.zeros((1, 8, self.model.config.d_model)), "lost": np.zeros((1, 8, self.model.config.d_model)), "current": np.zeros((1, 8, self.model.config.d_model))} for bucket in self.move_buckets} self.activations_count[layer_idx] = {bucket: {"won": 0, "lost": 0, "current": 0} for bucket in self.move_buckets} def apply_contrastive_activations(self, path, weight=1.0): if os.path.exists(path): with open(path, "rb") as f: activations_sum, activations_count = pickle.load(f) self.contrastive_activations_cache = {} def hook(module, input, output, layer_idx): if isinstance(output, tuple): tensor_output = output[0] else: tensor_output = output seq_len = tensor_output.shape[1] bucket = next(b for b in self.move_buckets if self.move_num <= b) # Check cache first if layer_idx in self.contrastive_activations_cache and bucket in self.contrastive_activations_cache[layer_idx]: safe_contrastive_activations = self.contrastive_activations_cache[layer_idx][bucket] else: won_activations = activations_sum[layer_idx][bucket]["won"] / activations_count[layer_idx][bucket]["won"] lost_activations = activations_sum[layer_idx][bucket]["lost"] / activations_count[layer_idx][bucket]["lost"] contrastive_activations = won_activations - lost_activations contrastive_activations_tensor = torch.from_numpy(contrastive_activations).to(tensor_output.device) valid_activations = torch.isfinite(contrastive_activations_tensor) safe_contrastive_activations = torch.zeros_like(contrastive_activations_tensor) safe_contrastive_activations[valid_activations] = contrastive_activations_tensor[valid_activations] # Cache the safe activations if layer_idx not in self.contrastive_activations_cache: self.contrastive_activations_cache[layer_idx] = {} self.contrastive_activations_cache[layer_idx][bucket] = safe_contrastive_activations tensor_output += safe_contrastive_activations[:, :seq_len, :] * weight if isinstance(output, tuple): return tensor_output, output[1] else: return tensor_output for layer_idx in activations_sum: self.hooks.append(self.model.backbone.layers[layer_idx].register_forward_hook( lambda module, input, output, layer_idx=layer_idx: hook(module, input, output, layer_idx) )) def update_linear_probe_targets(self, curr_q_value, q_value_delta, material_bal): bucket = next(b for b in self.move_buckets if self.move_num <= b) for layer_idx in self.linear_probe_targets: self.linear_probe_targets[layer_idx][bucket]['q_value'].append(curr_q_value) self.linear_probe_targets[layer_idx][bucket]['q_value_delta'].append(q_value_delta) self.linear_probe_targets[layer_idx][bucket]['material_balance'].append(material_bal) def train_linear_probes(self): def get_lr(it): warmup_iters = 0 #300 * 43 lr_decay_iters = 3000 * 43 learning_rate = 0.0000075 min_lr = 0.00000075 # 1) linear warmup for warmup_iters steps if it < warmup_iters: return learning_rate * it / warmup_iters # 2) if it > lr_decay_iters, return min learning rate if it > lr_decay_iters: return min_lr # 3) in between, use cosine decay down to min learning rate decay_ratio = (it - warmup_iters) / (lr_decay_iters - warmup_iters) assert 0 <= decay_ratio <= 1 coeff = 0.5 * (1.0 + math.cos(math.pi * decay_ratio)) # coeff ranges 0..1 return min_lr + coeff * (learning_rate - min_lr) criterion = nn.MSELoss() self.wandb_step += 1 lr = get_lr(self.wandb_step) for layer_idx in self.linear_probes: for bucket in self.move_buckets: if self.activations_count[layer_idx][bucket]['current'] > 0: X = torch.from_numpy(self.activations_sum[layer_idx][bucket]['current']).float().flatten(1) #/ self.activations_count[layer_idx][bucket]['current']).float() for probe_type in ['q_value', 'q_value_delta', 'material_balance']: y = torch.tensor(self.linear_probe_targets[layer_idx][bucket][probe_type]).float().unsqueeze(1) if len(y) > 0: y_pred = self.linear_probes[layer_idx][probe_type](X) loss = criterion(y_pred, y) for param_group in self.linear_optimizers[layer_idx][probe_type].param_groups: param_group['lr'] = lr self.linear_optimizers[layer_idx][probe_type].zero_grad() loss.backward() self.linear_optimizers[layer_idx][probe_type].step() #wandb.log({f"{probe_type}/layer_{layer_idx}_{bucket}_loss": loss.item()}) wandb.log({ "etc/lr": lr, f"{probe_type}/layer_{layer_idx}_loss": loss.item() }, step=self.wandb_step) # Reset linear_probe_targets after training self.linear_probe_targets = {i: {bucket: {'q_value': [], 'q_value_delta': [], 'material_balance': []} for bucket in self.move_buckets} for i in self.linear_probes} def save_linear_probe_data(self, path): self.linear_save_ct += 25 wandb.log({ "etc/games": self.linear_save_ct }, step=self.wandb_step) torch.save(self.linear_probes, path) def evaluate_linear_probes(self, board: chess.Board): self.move_num = board.fullmove_number bucket = next(b for b in self.move_buckets if self.move_num <= b) # Create a dictionary to store the statistics for the current move probe_stats = {probe_type: {layer_idx: {self.move_num: None} for layer_idx in self.linear_probes} for probe_type in ['q_value', 'q_value_delta', 'material_balance']} for layer_idx in self.linear_probes: X = torch.from_numpy(self.activations_sum[layer_idx][bucket]['current']).float().flatten(1) for probe_type in ['q_value', 'q_value_delta', 'material_balance']: target = torch.tensor(self.linear_probe_targets[layer_idx][bucket][probe_type]).float().item() probe = self.linear_probes[layer_idx][probe_type] prediction = probe(X).item() #print(f"Layer {layer_idx}, {probe_type}: {prediction} vs {target}") # Calculate the percentage accuracy based on the probe type if probe_type == 'q_value': accuracy = 1 - abs(prediction - target) / 2 # Q-value range: -1 to 1 elif probe_type == 'q_value_delta': accuracy = 1 - abs(prediction - target) / 4 # Q-value delta range: -2 to 2 else: # material_balance max_range = 35 # Adjust this value based on the expected range of material balance accuracy = 1 - min(abs(prediction - target) / max_range, 1) # Store the accuracy in the probe_stats dictionary for the current move probe_stats[probe_type][layer_idx][self.move_num] = accuracy self.linear_probe_targets = {i: {bucket: {'q_value': [], 'q_value_delta': [], 'material_balance': []} for bucket in self.move_buckets} for i in self.linear_probes} # Append the probe_stats to the file with open('probe_stats.json', 'a') as f: json.dump(probe_stats, f) f.write('\n') # Add a newline separator between moves