File size: 2,548 Bytes
e4b63c7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 |
---
library_name: transformers
language:
- hi
license: apache-2.0
base_model: openai/whisper-small
tags:
- hf-asr-leaderboard
- generated_from_trainer
datasets:
- aihub_adult_baseline
model-index:
- name: whisper-small-E10_Ypause_speed
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# whisper-small-E10_Ypause_speed
This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the aihub old adult freq speed pause changed dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2311
- Cer: 6.8433
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 50
- num_epochs: 2
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Cer |
|:-------------:|:------:|:----:|:---------------:|:------:|
| 0.2651 | 0.1289 | 100 | 0.2722 | 6.8961 |
| 0.1354 | 0.2579 | 200 | 0.2558 | 6.7199 |
| 0.1472 | 0.3868 | 300 | 0.2541 | 6.6377 |
| 0.1087 | 0.5158 | 400 | 0.2460 | 6.6964 |
| 0.1041 | 0.6447 | 500 | 0.2498 | 6.9079 |
| 0.0857 | 0.7737 | 600 | 0.2420 | 6.6729 |
| 0.0841 | 0.9026 | 700 | 0.2379 | 6.3910 |
| 0.0351 | 1.0309 | 800 | 0.2371 | 6.3616 |
| 0.0305 | 1.1599 | 900 | 0.2340 | 6.3851 |
| 0.0278 | 1.2888 | 1000 | 0.2376 | 6.1266 |
| 0.0304 | 1.4178 | 1100 | 0.2338 | 7.0312 |
| 0.0321 | 1.5467 | 1200 | 0.2375 | 7.1487 |
| 0.0293 | 1.6757 | 1300 | 0.2360 | 6.9666 |
| 0.0302 | 1.8046 | 1400 | 0.2333 | 7.2368 |
| 0.0342 | 1.9336 | 1500 | 0.2311 | 6.8433 |
### Framework versions
- Transformers 4.47.0.dev0
- Pytorch 2.5.0+cu121
- Datasets 3.1.0
- Tokenizers 0.20.3
|