--- library_name: transformers license: apache-2.0 base_model: facebook/wav2vec2-xls-r-1b tags: - generated_from_trainer model-index: - name: wav2vec2-1b-E10_speed results: [] --- # wav2vec2-1b-E10_speed This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.8527 - Cer: 21.5519 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Cer | |:-------------:|:------:|:----:|:---------------:|:-------:| | 21.0525 | 0.2580 | 200 | 4.6684 | 100.0 | | 3.9541 | 0.5160 | 400 | 2.8257 | 57.0724 | | 1.7271 | 0.7741 | 600 | 1.9449 | 44.8015 | | 1.3002 | 1.0321 | 800 | 1.4433 | 34.1224 | | 1.0165 | 1.2901 | 1000 | 1.3209 | 30.7272 | | 0.895 | 1.5481 | 1200 | 1.2042 | 29.3351 | | 0.8431 | 1.8062 | 1400 | 1.1021 | 27.5905 | | 0.7042 | 2.0642 | 1600 | 1.3478 | 32.1311 | | 0.6066 | 2.3222 | 1800 | 1.3199 | 32.1487 | | 0.589 | 2.5802 | 2000 | 1.1196 | 27.7961 | | 0.549 | 2.8383 | 2200 | 1.1813 | 29.9048 | | 0.4874 | 3.0963 | 2400 | 0.9759 | 24.7415 | | 0.3897 | 3.3543 | 2600 | 0.9338 | 23.9720 | | 0.3993 | 3.6123 | 2800 | 0.9023 | 22.8560 | | 0.361 | 3.8703 | 3000 | 0.8922 | 22.9911 | | 0.3091 | 4.1284 | 3200 | 0.9250 | 23.5491 | | 0.2812 | 4.3864 | 3400 | 0.8751 | 22.0982 | | 0.2639 | 4.6444 | 3600 | 0.8540 | 21.5754 | | 0.2451 | 4.9024 | 3800 | 0.8527 | 21.5519 | ### Framework versions - Transformers 4.45.2 - Pytorch 2.3.1.post100 - Datasets 2.19.1 - Tokenizers 0.20.1