--- license: apache-2.0 base_model: distilbert/distilbert-base-multilingual-cased tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: distilbert-base-multilingual-cased-finetuned-ner-geocorpus results: [] --- # distilbert-base-multilingual-cased-finetuned-ner-geocorpus This model is a fine-tuned version of [distilbert/distilbert-base-multilingual-cased](https://huggingface.co/distilbert/distilbert-base-multilingual-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1028 - Precision: 0.8079 - Recall: 0.8868 - F1: 0.8455 - Accuracy: 0.9747 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 276 | 0.1866 | 0.7323 | 0.6760 | 0.7030 | 0.9551 | | 0.2877 | 2.0 | 552 | 0.1247 | 0.7870 | 0.7788 | 0.7829 | 0.9685 | | 0.2877 | 3.0 | 828 | 0.1125 | 0.8547 | 0.7819 | 0.8167 | 0.9719 | | 0.0858 | 4.0 | 1104 | 0.1043 | 0.8274 | 0.8463 | 0.8368 | 0.9739 | | 0.0858 | 5.0 | 1380 | 0.1062 | 0.8349 | 0.8349 | 0.8349 | 0.9730 | | 0.0424 | 6.0 | 1656 | 0.1028 | 0.8079 | 0.8868 | 0.8455 | 0.9747 | | 0.0424 | 7.0 | 1932 | 0.1139 | 0.8586 | 0.8702 | 0.8644 | 0.9769 | | 0.0225 | 8.0 | 2208 | 0.1229 | 0.8511 | 0.9024 | 0.8760 | 0.9765 | ### Framework versions - Transformers 4.41.1 - Pytorch 2.1.2 - Datasets 2.19.1 - Tokenizers 0.19.1