--- license: apache-2.0 base_model: google-bert/bert-large-cased tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: bert-large-cased-finetuned-ner-harem results: [] --- # bert-large-cased-finetuned-ner-harem This model is a fine-tuned version of [google-bert/bert-large-cased](https://huggingface.co/google-bert/bert-large-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2665 - Precision: 0.7241 - Recall: 0.7423 - F1: 0.7331 - Accuracy: 0.9611 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:------:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 0.9938 | 140 | 0.2609 | 0.5107 | 0.5626 | 0.5354 | 0.9324 | | No log | 1.9947 | 281 | 0.2057 | 0.6370 | 0.6642 | 0.6503 | 0.9517 | | No log | 2.9956 | 422 | 0.2106 | 0.6527 | 0.6642 | 0.6584 | 0.9566 | | 0.2074 | 3.9965 | 563 | 0.2342 | 0.6843 | 0.7054 | 0.6947 | 0.9571 | | 0.2074 | 4.9973 | 704 | 0.2369 | 0.7216 | 0.7290 | 0.7253 | 0.9614 | | 0.2074 | 5.9982 | 845 | 0.2334 | 0.7013 | 0.7261 | 0.7135 | 0.9574 | | 0.2074 | 6.9991 | 986 | 0.2580 | 0.7139 | 0.7570 | 0.7348 | 0.9592 | | 0.0377 | 8.0 | 1127 | 0.2658 | 0.7452 | 0.7452 | 0.7452 | 0.9607 | | 0.0377 | 8.9938 | 1267 | 0.2619 | 0.7543 | 0.7688 | 0.7615 | 0.9637 | | 0.0377 | 9.9379 | 1400 | 0.2665 | 0.7241 | 0.7423 | 0.7331 | 0.9611 | ### Framework versions - Transformers 4.41.1 - Pytorch 2.1.2 - Datasets 2.19.1 - Tokenizers 0.19.1