--- library_name: transformers license: apache-2.0 base_model: google-bert/bert-large-cased tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: bert-large-cased-finetuned-ner-geocorpus results: [] --- # bert-large-cased-finetuned-ner-geocorpus This model is a fine-tuned version of [google-bert/bert-large-cased](https://huggingface.co/google-bert/bert-large-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1330 - Precision: 0.868 - Recall: 0.8872 - F1: 0.8775 - Accuracy: 0.9793 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 16 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:------:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 0.9991 | 275 | 0.1429 | 0.7212 | 0.7318 | 0.7265 | 0.9613 | | 0.21 | 1.9982 | 550 | 0.1111 | 0.7211 | 0.8267 | 0.7703 | 0.9654 | | 0.21 | 2.9973 | 825 | 0.0979 | 0.8168 | 0.8168 | 0.8168 | 0.9725 | | 0.0651 | 4.0 | 1101 | 0.1088 | 0.7574 | 0.9011 | 0.8230 | 0.9678 | | 0.0651 | 4.9991 | 1376 | 0.1033 | 0.825 | 0.8904 | 0.8565 | 0.9744 | | 0.0305 | 5.9982 | 1651 | 0.1132 | 0.8908 | 0.8536 | 0.8718 | 0.9785 | | 0.0305 | 6.9973 | 1926 | 0.1127 | 0.8591 | 0.8823 | 0.8705 | 0.9786 | | 0.0153 | 8.0 | 2202 | 0.1155 | 0.8687 | 0.8814 | 0.8750 | 0.9795 | | 0.0153 | 8.9991 | 2477 | 0.1280 | 0.8860 | 0.8774 | 0.8817 | 0.9804 | | 0.0089 | 9.9909 | 2750 | 0.1330 | 0.868 | 0.8872 | 0.8775 | 0.9793 | ### Framework versions - Transformers 4.46.2 - Pytorch 2.5.1+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3