File size: 1,719 Bytes
779f9d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
167f08a
 
 
779f9d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
167f08a
 
 
 
 
779f9d3
 
 
 
167f08a
779f9d3
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
---
license: mit
base_model: microsoft/deberta-v3-base
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
model-index:
- name: deberta-v3-base-finetuned-t_vendor
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# deberta-v3-base-finetuned-t_vendor

This model is a fine-tuned version of [microsoft/deberta-v3-base](https://huggingface.co/microsoft/deberta-v3-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3395
- Accuracy: 0.895
- F1: 0.9025

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1     |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| 0.685         | 1.0   | 26   | 0.6479          | 0.51     | 0.5687 |
| 0.5257        | 2.0   | 52   | 0.3567          | 0.845    | 0.8637 |
| 0.2651        | 3.0   | 78   | 0.2971          | 0.885    | 0.8958 |
| 0.1958        | 4.0   | 104  | 0.3338          | 0.9      | 0.9068 |
| 0.1535        | 5.0   | 130  | 0.3395          | 0.895    | 0.9025 |


### Framework versions

- Transformers 4.41.2
- Pytorch 2.3.0+cu121
- Tokenizers 0.19.1