File size: 1,721 Bytes
2f4cbb6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
245a434
 
 
2f4cbb6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
245a434
 
 
 
 
2f4cbb6
 
 
 
245a434
2f4cbb6
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
---
license: mit
base_model: microsoft/deberta-v3-base
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
model-index:
- name: deberta-v3-base-finetuned-t_product
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# deberta-v3-base-finetuned-t_product

This model is a fine-tuned version of [microsoft/deberta-v3-base](https://huggingface.co/microsoft/deberta-v3-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3615
- Accuracy: 0.865
- F1: 0.8646

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1     |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| 0.6779        | 1.0   | 26   | 0.6194          | 0.63     | 0.6136 |
| 0.512         | 2.0   | 52   | 0.4479          | 0.825    | 0.8227 |
| 0.3284        | 3.0   | 78   | 0.3676          | 0.865    | 0.8655 |
| 0.2196        | 4.0   | 104  | 0.3581          | 0.86     | 0.8602 |
| 0.1563        | 5.0   | 130  | 0.3615          | 0.865    | 0.8646 |


### Framework versions

- Transformers 4.41.2
- Pytorch 2.3.0+cu121
- Tokenizers 0.19.1