GouldJayden
commited on
Commit
•
0533fde
1
Parent(s):
03eeb3b
Upload PPO LunarLander-v2 trained agent
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +99 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +9 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 263.41 +/- 23.75
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7c588cf86830>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7c588cf868c0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7c588cf86950>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7c588cf869e0>", "_build": "<function ActorCriticPolicy._build at 0x7c588cf86a70>", "forward": "<function ActorCriticPolicy.forward at 0x7c588cf86b00>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7c588cf86b90>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7c588cf86c20>", "_predict": "<function ActorCriticPolicy._predict at 0x7c588cf86cb0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7c588cf86d40>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7c588cf86dd0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7c588cf86e60>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7c588cf888c0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1701005902203409220, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAALo+DL7Y/x8//Rl8u4Oynr4sUEK9lgHRPQAAAAAAAAAATe8UPcMZQ7rucTM3U+IrMu/LKDm+n1S2AACAPwAAgD9GMV++HcdsP3q7OjwsJIy+U8yVvl4hSD4AAAAAAAAAACY2vb0fFME/rsG3vo6WAb4GoFG+ALx0vgAAAAAAAAAAM0HXPBQwobqZV5W6XJSQtYWzITq3D6w5AACAPwAAgD/DCG6+bvmYP4XPgb5rUam+1uj5vsxETD0AAAAAAAAAADOtbDzcfEu8JtIPuxt0FT0O/7e9lkjtPQAAgD8AAIA/ANeJPFwTaLok/ps5nloZtmXpaLkzlLa4AACAPwAAgD9GSAC+gS2SP75jwDxj8sK+HJfBvpOGzz0AAAAAAAAAAM1QkbthtBA+SJBSvZNlXb5LU6g65yuSvQAAAAAAAAAAM+YTPgL8iD8JvKg+V63wvibWVz6dXCI+AAAAAAAAAAAA0Aw8KTRkuuu8lrySOIw23XQ0u/KFALYAAIA/AAAAAGavH70uJLu8B38TvVJapLxal/89ViBIPgAAgD8AAIA/JoudvQAtgj8+ntC8nEaavqPCHr544zI+AAAAAAAAAABNqQy+pLKmP9VYpr4VIri+T3eGviPA0r0AAAAAAAAAAJppNzuuz4o5WqgUPmr3GL6bgeY88nuZvgAAAAAAAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVMQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHGsd1dPci6MAWyUS/+MAXSUR0C/ZJig9NeudX2UKGgGR0Bkb+ivgWJraAdN6ANoCEdAv2TTDDTBqXV9lChoBkdAb8z7Lt/nXGgHTTcBaAhHQL9lK/ag2611fZQoaAZHQHAVLYoRZlpoB00EAWgIR0C/ZUGm1pj+dX2UKGgGR0BwxIf1YhdMaAdNGAFoCEdAv2VLw3HaOHV9lChoBkdAZtTFy7wrlWgHTegDaAhHQL9lr+0PYnR1fZQoaAZHQGw0FN1yNn5oB00ZAWgIR0C/ZcOjua4MdX2UKGgGR0BzDuEal1r7aAdNJAFoCEdAv2XjKV6eG3V9lChoBkdAcoi+3Ytg8mgHTQUBaAhHQL9mD/oJRfp1fZQoaAZHQHJPAlOXVsloB00gAWgIR0C/ZhaArhBJdX2UKGgGR0ByWT7TDwYtaAdNEAFoCEdAv2YpHEuQIXV9lChoBkdAb4q8IRh+fGgHTSABaAhHQL9mUNMXaal1fZQoaAZHQEl0kXUH6dloB0vKaAhHQL9mWa6STyJ1fZQoaAZHQG++gc94eLhoB00vAWgIR0C/ZnE5U96kdX2UKGgGR0BuvR82Jiy6aAdL/2gIR0C/Zn3GCI1tdX2UKGgGR0BrwzeKsMiKaAdNKQFoCEdAv2ayYRdyDXV9lChoBkdAcvYMTewcHWgHS/xoCEdAv2ceu2Zy/HV9lChoBkdAcRLR2KVIJGgHTQ4BaAhHQL9nOL6UJOZ1fZQoaAZHQHA6by6MBIZoB00wAWgIR0C/aCnzQNTcdX2UKGgGR0BwE9mjCYTkaAdNFAFoCEdAv2hQ4aP0ZnV9lChoBkdAbvD+ZPVNH2gHTR8BaAhHQL9oZm3fAKx1fZQoaAZHQHKl0qUeMhpoB01SAWgIR0C/aGu7tiQUdX2UKGgGR0BxEWtp22XtaAdNOgFoCEdAv2hwsasIV3V9lChoBkdARhz8ejmCAmgHS+xoCEdAv2h96X0GvHV9lChoBkdAcjXI+GGmDWgHTSABaAhHQL9ou3ljmS11fZQoaAZHQHGV5okAxSJoB026AWgIR0C/aMJ+6RQrdX2UKGgGR0Bwq2JaaCtjaAdNJgFoCEdAv2jS2G7Bf3V9lChoBkdAbLZxoZhrnGgHTUkBaAhHQL9o4u3+dbx1fZQoaAZHQHLTwr1/UfBoB00KAWgIR0C/aQA8OkLydX2UKGgGR0BJPwnx8UmEaAdL7mgIR0C/aVHgYP5IdX2UKGgGR0BVSXKKYRdyaAdLu2gIR0C/adytA9mpdX2UKGgGR0Bwf2WpqASWaAdNRAFoCEdAv2nh+EytWHV9lChoBkdAcV0ji4rjHWgHTcgBaAhHQL9qKfpD/l11fZQoaAZHQGNhXuE25x1oB03oA2gIR0C/alz2alUIdX2UKGgGR0Bu3fJHRTjvaAdNFAFoCEdAv2putJWeYnV9lChoBkdAcuG+y7f512gHS+NoCEdAv2qBuUD+znV9lChoBkdAcYiht+CsfmgHS/VoCEdAv2qvbKzRhXV9lChoBkdAcPC0fYBeX2gHTSUBaAhHQL9qscz67/Z1fZQoaAZHQGw9a9sabWpoB006AWgIR0C/avAtFrmAdX2UKGgGR0BwgfQokRjCaAdNOwFoCEdAv2sCpJf6XXV9lChoBkdAbmZVPva11GgHTQMBaAhHQL9rDf8dgfF1fZQoaAZHQHHlYSg5BC5oB00gAWgIR0C/axRYV6/qdX2UKGgGR0ByoUYBNmDlaAdNIQFoCEdAv2sjK5kK/nV9lChoBkdAcFNB/I8yOGgHTXIBaAhHQL9rUzSkTHt1fZQoaAZHQHD52J3xFy9oB00JAWgIR0C/a12/SH/MdX2UKGgGR0BxizCFbmlqaAdNAwFoCEdAv2/be67NCHV9lChoBkdAb1FxyXD3umgHTQwBaAhHQL9v8aews5J1fZQoaAZHQGa+OaWom5VoB03oA2gIR0C/cBrWd3B6dX2UKGgGR0BwU4SQHRkVaAdNGQFoCEdAv3BKafBeonV9lChoBkdAcSeEIw/PgWgHTQMBaAhHQL9wbUy57PZ1fZQoaAZHQHJ19rO7g89oB00QAWgIR0C/cHTiwSrYdX2UKGgGR0BwlZ0dRzikaAdNGgFoCEdAv3B5OFg2InV9lChoBkdAby5XYlIEsGgHS/xoCEdAv3CIi3XqaHV9lChoBkdAc1esDGLk0mgHS+5oCEdAv3C8rK/203V9lChoBkdAcRwF7D2rXGgHTSABaAhHQL9wwc1fmcR1fZQoaAZHQHKy1o11nuloB0v6aAhHQL9w1ujRD1J1fZQoaAZHQHEEnUH6dlNoB00pAWgIR0C/cQW+bmU4dX2UKGgGR0BvkcfozN2UaAdNNwFoCEdAv3EtZFG5MHV9lChoBkdAcDZ7NB4UvmgHTSwBaAhHQL9xOrtE5Qx1fZQoaAZHQG5dKhcqvvBoB00TAWgIR0C/cUx/qgRLdX2UKGgGR0ByJyTTvy9VaAdNKQFoCEdAv3FitaIN3HV9lChoBkdAR1SvJRwZO2gHS9ZoCEdAv3GCw6hg3XV9lChoBkdAcib3ueBg/mgHTTEBaAhHQL9yApIczZZ1fZQoaAZHQG9H9+5OJtVoB00UAWgIR0C/cl5NXYDldX2UKGgGR0BxBgmICU5daAdNGwFoCEdAv3JgkSmIkHV9lChoBkdAcEydv863iWgHTR0BaAhHQL9ybZnctXh1fZQoaAZHQHHknl8w5/9oB00bAWgIR0C/coDQVsUJdX2UKGgGR0BxTGMbWEsbaAdNTwFoCEdAv3KnHtF8X3V9lChoBkdAcOTKKHfuTmgHTQ4BaAhHQL9yrV2zOX51fZQoaAZHQG1k+8wpON5oB00AAWgIR0C/ct9sFdLQdX2UKGgGR0BwbI1cdHUdaAdNKAFoCEdAv3L1rDZUUHV9lChoBkdAcrRhrFfiP2gHTToBaAhHQL9y+abWmP51fZQoaAZHQHB+SLAHmihoB0v+aAhHQL9zBTSb6P91fZQoaAZHQHLQ4/Z/Tb5oB00MAWgIR0C/cykq6OHWdX2UKGgGR0BsprIFNcnmaAdNDwFoCEdAv3Nb5RCQcXV9lChoBkdAb4yzvZyuIWgHTSIBaAhHQL9zYi/fwZx1fZQoaAZHQHA7VWbPQfJoB00TAWgIR0C/c4aNZNfxdX2UKGgGR0BwwDVRUFSsaAdNJwFoCEdAv3Q0OEug6HV9lChoBkdAcxPpr1uivmgHS+poCEdAv3RfXz19OXV9lChoBkdAch3FOfukUWgHTQ4BaAhHQL90au8scyZ1fZQoaAZHQEUJggHNX5poB0vWaAhHQL90b7/XGwR1fZQoaAZHQHBtfLowEhdoB00nAWgIR0C/dJK8DjiodX2UKGgGR0Bv2XX5FgDzaAdNLQFoCEdAv3ShVinYQXV9lChoBkdAbrArYGt6omgHTRIBaAhHQL90rxgRbr11fZQoaAZHQHDAqy4Wk8BoB00oAWgIR0C/dLVERaoudX2UKGgGR0BQEV85S3spaAdL3GgIR0C/dNEFOfukdX2UKGgGR0Bwr8BXCCSSaAdNEgFoCEdAv3T5Z/0/W3V9lChoBkdAUZDJq7Ack2gHS9poCEdAv3UC4Cp3o3V9lChoBkdAcWuC17Y022gHTRsBaAhHQL91DIkJKJ51fZQoaAZHQHHxKlUIcBFoB00VAWgIR0C/dQ45o4+9dX2UKGgGR0BxFD2dupCKaAdNCAFoCEdAv3VRGAkLQXV9lChoBkdAcVxPfsNUfmgHS/9oCEdAv3Vk8mrsB3V9lChoBkdAb5vu+h4+r2gHTQABaAhHQL92BHvc8DB1fZQoaAZHQHCyyU5dWyVoB00LAWgIR0C/dlT0L+gldX2UKGgGR0BxevGS6lLwaAdNFgFoCEdAv3Zphd+ocnV9lChoBkdAcmSF0xM362gHTQkBaAhHQL92dO2RaHN1fZQoaAZHQG+aWnTAnD1oB00gAWgIR0C/dnUf9xZMdX2UKGgGR0BywVVCHARDaAdNBwFoCEdAv3aL8vVVgnV9lChoBkdAcptjFyaNM2gHTRMBaAhHQL92lZX+2mZ1fZQoaAZHQG0YDzyz5XVoB00PAWgIR0C/dqE4rBj4dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 280, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:23db9dec8825e229fffea8c5f26d3118c0c44bc93a3e08e4aa7e82eff7a3636c
|
3 |
+
size 148030
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0a5
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7c588cf86830>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7c588cf868c0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7c588cf86950>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7c588cf869e0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7c588cf86a70>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7c588cf86b00>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7c588cf86b90>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7c588cf86c20>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7c588cf86cb0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7c588cf86d40>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7c588cf86dd0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7c588cf86e60>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7c588cf888c0>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 1015808,
|
25 |
+
"_total_timesteps": 1000000,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1701005902203409220,
|
30 |
+
"learning_rate": 0.0003,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"_last_obs": {
|
33 |
+
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAALo+DL7Y/x8//Rl8u4Oynr4sUEK9lgHRPQAAAAAAAAAATe8UPcMZQ7rucTM3U+IrMu/LKDm+n1S2AACAPwAAgD9GMV++HcdsP3q7OjwsJIy+U8yVvl4hSD4AAAAAAAAAACY2vb0fFME/rsG3vo6WAb4GoFG+ALx0vgAAAAAAAAAAM0HXPBQwobqZV5W6XJSQtYWzITq3D6w5AACAPwAAgD/DCG6+bvmYP4XPgb5rUam+1uj5vsxETD0AAAAAAAAAADOtbDzcfEu8JtIPuxt0FT0O/7e9lkjtPQAAgD8AAIA/ANeJPFwTaLok/ps5nloZtmXpaLkzlLa4AACAPwAAgD9GSAC+gS2SP75jwDxj8sK+HJfBvpOGzz0AAAAAAAAAAM1QkbthtBA+SJBSvZNlXb5LU6g65yuSvQAAAAAAAAAAM+YTPgL8iD8JvKg+V63wvibWVz6dXCI+AAAAAAAAAAAA0Aw8KTRkuuu8lrySOIw23XQ0u/KFALYAAIA/AAAAAGavH70uJLu8B38TvVJapLxal/89ViBIPgAAgD8AAIA/JoudvQAtgj8+ntC8nEaavqPCHr544zI+AAAAAAAAAABNqQy+pLKmP9VYpr4VIri+T3eGviPA0r0AAAAAAAAAAJppNzuuz4o5WqgUPmr3GL6bgeY88nuZvgAAAAAAAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
35 |
+
},
|
36 |
+
"_last_episode_starts": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
39 |
+
},
|
40 |
+
"_last_original_obs": null,
|
41 |
+
"_episode_num": 0,
|
42 |
+
"use_sde": false,
|
43 |
+
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -0.015808000000000044,
|
45 |
+
"_stats_window_size": 100,
|
46 |
+
"ep_info_buffer": {
|
47 |
+
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWVMQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHGsd1dPci6MAWyUS/+MAXSUR0C/ZJig9NeudX2UKGgGR0Bkb+ivgWJraAdN6ANoCEdAv2TTDDTBqXV9lChoBkdAb8z7Lt/nXGgHTTcBaAhHQL9lK/ag2611fZQoaAZHQHAVLYoRZlpoB00EAWgIR0C/ZUGm1pj+dX2UKGgGR0BwxIf1YhdMaAdNGAFoCEdAv2VLw3HaOHV9lChoBkdAZtTFy7wrlWgHTegDaAhHQL9lr+0PYnR1fZQoaAZHQGw0FN1yNn5oB00ZAWgIR0C/ZcOjua4MdX2UKGgGR0BzDuEal1r7aAdNJAFoCEdAv2XjKV6eG3V9lChoBkdAcoi+3Ytg8mgHTQUBaAhHQL9mD/oJRfp1fZQoaAZHQHJPAlOXVsloB00gAWgIR0C/ZhaArhBJdX2UKGgGR0ByWT7TDwYtaAdNEAFoCEdAv2YpHEuQIXV9lChoBkdAb4q8IRh+fGgHTSABaAhHQL9mUNMXaal1fZQoaAZHQEl0kXUH6dloB0vKaAhHQL9mWa6STyJ1fZQoaAZHQG++gc94eLhoB00vAWgIR0C/ZnE5U96kdX2UKGgGR0BuvR82Jiy6aAdL/2gIR0C/Zn3GCI1tdX2UKGgGR0BrwzeKsMiKaAdNKQFoCEdAv2ayYRdyDXV9lChoBkdAcvYMTewcHWgHS/xoCEdAv2ceu2Zy/HV9lChoBkdAcRLR2KVIJGgHTQ4BaAhHQL9nOL6UJOZ1fZQoaAZHQHA6by6MBIZoB00wAWgIR0C/aCnzQNTcdX2UKGgGR0BwE9mjCYTkaAdNFAFoCEdAv2hQ4aP0ZnV9lChoBkdAbvD+ZPVNH2gHTR8BaAhHQL9oZm3fAKx1fZQoaAZHQHKl0qUeMhpoB01SAWgIR0C/aGu7tiQUdX2UKGgGR0BxEWtp22XtaAdNOgFoCEdAv2hwsasIV3V9lChoBkdARhz8ejmCAmgHS+xoCEdAv2h96X0GvHV9lChoBkdAcjXI+GGmDWgHTSABaAhHQL9ou3ljmS11fZQoaAZHQHGV5okAxSJoB026AWgIR0C/aMJ+6RQrdX2UKGgGR0Bwq2JaaCtjaAdNJgFoCEdAv2jS2G7Bf3V9lChoBkdAbLZxoZhrnGgHTUkBaAhHQL9o4u3+dbx1fZQoaAZHQHLTwr1/UfBoB00KAWgIR0C/aQA8OkLydX2UKGgGR0BJPwnx8UmEaAdL7mgIR0C/aVHgYP5IdX2UKGgGR0BVSXKKYRdyaAdLu2gIR0C/adytA9mpdX2UKGgGR0Bwf2WpqASWaAdNRAFoCEdAv2nh+EytWHV9lChoBkdAcV0ji4rjHWgHTcgBaAhHQL9qKfpD/l11fZQoaAZHQGNhXuE25x1oB03oA2gIR0C/alz2alUIdX2UKGgGR0Bu3fJHRTjvaAdNFAFoCEdAv2putJWeYnV9lChoBkdAcuG+y7f512gHS+NoCEdAv2qBuUD+znV9lChoBkdAcYiht+CsfmgHS/VoCEdAv2qvbKzRhXV9lChoBkdAcPC0fYBeX2gHTSUBaAhHQL9qscz67/Z1fZQoaAZHQGw9a9sabWpoB006AWgIR0C/avAtFrmAdX2UKGgGR0BwgfQokRjCaAdNOwFoCEdAv2sCpJf6XXV9lChoBkdAbmZVPva11GgHTQMBaAhHQL9rDf8dgfF1fZQoaAZHQHHlYSg5BC5oB00gAWgIR0C/axRYV6/qdX2UKGgGR0ByoUYBNmDlaAdNIQFoCEdAv2sjK5kK/nV9lChoBkdAcFNB/I8yOGgHTXIBaAhHQL9rUzSkTHt1fZQoaAZHQHD52J3xFy9oB00JAWgIR0C/a12/SH/MdX2UKGgGR0BxizCFbmlqaAdNAwFoCEdAv2/be67NCHV9lChoBkdAb1FxyXD3umgHTQwBaAhHQL9v8aews5J1fZQoaAZHQGa+OaWom5VoB03oA2gIR0C/cBrWd3B6dX2UKGgGR0BwU4SQHRkVaAdNGQFoCEdAv3BKafBeonV9lChoBkdAcSeEIw/PgWgHTQMBaAhHQL9wbUy57PZ1fZQoaAZHQHJ19rO7g89oB00QAWgIR0C/cHTiwSrYdX2UKGgGR0BwlZ0dRzikaAdNGgFoCEdAv3B5OFg2InV9lChoBkdAby5XYlIEsGgHS/xoCEdAv3CIi3XqaHV9lChoBkdAc1esDGLk0mgHS+5oCEdAv3C8rK/203V9lChoBkdAcRwF7D2rXGgHTSABaAhHQL9wwc1fmcR1fZQoaAZHQHKy1o11nuloB0v6aAhHQL9w1ujRD1J1fZQoaAZHQHEEnUH6dlNoB00pAWgIR0C/cQW+bmU4dX2UKGgGR0BvkcfozN2UaAdNNwFoCEdAv3EtZFG5MHV9lChoBkdAcDZ7NB4UvmgHTSwBaAhHQL9xOrtE5Qx1fZQoaAZHQG5dKhcqvvBoB00TAWgIR0C/cUx/qgRLdX2UKGgGR0ByJyTTvy9VaAdNKQFoCEdAv3FitaIN3HV9lChoBkdAR1SvJRwZO2gHS9ZoCEdAv3GCw6hg3XV9lChoBkdAcib3ueBg/mgHTTEBaAhHQL9yApIczZZ1fZQoaAZHQG9H9+5OJtVoB00UAWgIR0C/cl5NXYDldX2UKGgGR0BxBgmICU5daAdNGwFoCEdAv3JgkSmIkHV9lChoBkdAcEydv863iWgHTR0BaAhHQL9ybZnctXh1fZQoaAZHQHHknl8w5/9oB00bAWgIR0C/coDQVsUJdX2UKGgGR0BxTGMbWEsbaAdNTwFoCEdAv3KnHtF8X3V9lChoBkdAcOTKKHfuTmgHTQ4BaAhHQL9yrV2zOX51fZQoaAZHQG1k+8wpON5oB00AAWgIR0C/ct9sFdLQdX2UKGgGR0BwbI1cdHUdaAdNKAFoCEdAv3L1rDZUUHV9lChoBkdAcrRhrFfiP2gHTToBaAhHQL9y+abWmP51fZQoaAZHQHB+SLAHmihoB0v+aAhHQL9zBTSb6P91fZQoaAZHQHLQ4/Z/Tb5oB00MAWgIR0C/cykq6OHWdX2UKGgGR0BsprIFNcnmaAdNDwFoCEdAv3Nb5RCQcXV9lChoBkdAb4yzvZyuIWgHTSIBaAhHQL9zYi/fwZx1fZQoaAZHQHA7VWbPQfJoB00TAWgIR0C/c4aNZNfxdX2UKGgGR0BwwDVRUFSsaAdNJwFoCEdAv3Q0OEug6HV9lChoBkdAcxPpr1uivmgHS+poCEdAv3RfXz19OXV9lChoBkdAch3FOfukUWgHTQ4BaAhHQL90au8scyZ1fZQoaAZHQEUJggHNX5poB0vWaAhHQL90b7/XGwR1fZQoaAZHQHBtfLowEhdoB00nAWgIR0C/dJK8DjiodX2UKGgGR0Bv2XX5FgDzaAdNLQFoCEdAv3ShVinYQXV9lChoBkdAbrArYGt6omgHTRIBaAhHQL90rxgRbr11fZQoaAZHQHDAqy4Wk8BoB00oAWgIR0C/dLVERaoudX2UKGgGR0BQEV85S3spaAdL3GgIR0C/dNEFOfukdX2UKGgGR0Bwr8BXCCSSaAdNEgFoCEdAv3T5Z/0/W3V9lChoBkdAUZDJq7Ack2gHS9poCEdAv3UC4Cp3o3V9lChoBkdAcWuC17Y022gHTRsBaAhHQL91DIkJKJ51fZQoaAZHQHHxKlUIcBFoB00VAWgIR0C/dQ45o4+9dX2UKGgGR0BxFD2dupCKaAdNCAFoCEdAv3VRGAkLQXV9lChoBkdAcVxPfsNUfmgHS/9oCEdAv3Vk8mrsB3V9lChoBkdAb5vu+h4+r2gHTQABaAhHQL92BHvc8DB1fZQoaAZHQHCyyU5dWyVoB00LAWgIR0C/dlT0L+gldX2UKGgGR0BxevGS6lLwaAdNFgFoCEdAv3Zphd+ocnV9lChoBkdAcmSF0xM362gHTQkBaAhHQL92dO2RaHN1fZQoaAZHQG+aWnTAnD1oB00gAWgIR0C/dnUf9xZMdX2UKGgGR0BywVVCHARDaAdNBwFoCEdAv3aL8vVVgnV9lChoBkdAcptjFyaNM2gHTRMBaAhHQL92lZX+2mZ1fZQoaAZHQG0YDzyz5XVoB00PAWgIR0C/dqE4rBj4dWUu"
|
49 |
+
},
|
50 |
+
"ep_success_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
+
},
|
54 |
+
"_n_updates": 280,
|
55 |
+
"observation_space": {
|
56 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
+
":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
58 |
+
"dtype": "float32",
|
59 |
+
"bounded_below": "[ True True True True True True True True]",
|
60 |
+
"bounded_above": "[ True True True True True True True True]",
|
61 |
+
"_shape": [
|
62 |
+
8
|
63 |
+
],
|
64 |
+
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
65 |
+
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
66 |
+
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
67 |
+
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
68 |
+
"_np_random": null
|
69 |
+
},
|
70 |
+
"action_space": {
|
71 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
72 |
+
":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
|
73 |
+
"n": "4",
|
74 |
+
"start": "0",
|
75 |
+
"_shape": [],
|
76 |
+
"dtype": "int64",
|
77 |
+
"_np_random": null
|
78 |
+
},
|
79 |
+
"n_envs": 16,
|
80 |
+
"n_steps": 1024,
|
81 |
+
"gamma": 0.999,
|
82 |
+
"gae_lambda": 0.98,
|
83 |
+
"ent_coef": 0.01,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 4,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null,
|
95 |
+
"lr_schedule": {
|
96 |
+
":type:": "<class 'function'>",
|
97 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
98 |
+
}
|
99 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7629a2aefcfecd90062f44a9802205245ae063969923d1b78d9df93a1d9e2b35
|
3 |
+
size 88362
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1404140500f11f83286e44ead61ae2c55fd675c506d1fc5a5f07e2ae1c0bd689
|
3 |
+
size 43762
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
|
3 |
+
size 864
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.1.0+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.23.5
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
replay.mp4
ADDED
Binary file (155 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 263.4135873085931, "std_reward": 23.749675749588782, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-11-26T14:13:11.673348"}
|