--- library_name: transformers language: - ur license: apache-2.0 base_model: GogetaBlueMUI/whisper-small-ur tags: - generated_from_trainer datasets: - mozilla-foundation/common_voice_13_0 metrics: - wer model-index: - name: Whisper Small Urdu V2 - Muhammad Abdullah results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 13.0 type: mozilla-foundation/common_voice_13_0 config: ur split: test args: 'config: ur, split: test' metrics: - name: Wer type: wer value: 35.42311262376238 --- # Whisper Small Urdu V2 - Muhammad Abdullah This model is a fine-tuned version of [GogetaBlueMUI/whisper-small-ur](https://huggingface.co/GogetaBlueMUI/whisper-small-ur) on the Common Voice 13.0 dataset. It achieves the following results on the evaluation set: - Loss: 0.7436 - Wer: 35.4231 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 1500 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:-------:| | 0.068 | 1.9305 | 500 | 0.6670 | 37.1751 | | 0.0182 | 3.8610 | 1000 | 0.7094 | 35.9684 | | 0.0032 | 5.7915 | 1500 | 0.7436 | 35.4231 | ### Framework versions - Transformers 4.47.0 - Pytorch 2.5.1+cu121 - Datasets 3.1.0 - Tokenizers 0.21.0