import numpy as np import scipy import scipy.spatial from rfdiffusion.kinematics import get_dih # calculate planar angles defined by 3 sets of points def get_angles(a, b, c): v = a - b v /= np.linalg.norm(v, axis=-1)[:,None] w = c - b w /= np.linalg.norm(w, axis=-1)[:,None] x = np.sum(v*w, axis=1) #return np.arccos(x) return np.arccos(np.clip(x, -1.0, 1.0)) # get 6d coordinates from x,y,z coords of N,Ca,C atoms def get_coords6d(xyz, dmax): nres = xyz.shape[1] # three anchor atoms N = xyz[0] Ca = xyz[1] C = xyz[2] # recreate Cb given N,Ca,C b = Ca - N c = C - Ca a = np.cross(b, c) Cb = -0.58273431*a + 0.56802827*b - 0.54067466*c + Ca # fast neighbors search to collect all # Cb-Cb pairs within dmax kdCb = scipy.spatial.cKDTree(Cb) indices = kdCb.query_ball_tree(kdCb, dmax) # indices of contacting residues idx = np.array([[i,j] for i in range(len(indices)) for j in indices[i] if i != j]).T idx0 = idx[0] idx1 = idx[1] # Cb-Cb distance matrix dist6d = np.full((nres, nres),999.9, dtype=np.float32) dist6d[idx0,idx1] = np.linalg.norm(Cb[idx1]-Cb[idx0], axis=-1) # matrix of Ca-Cb-Cb-Ca dihedrals omega6d = np.zeros((nres, nres), dtype=np.float32) omega6d[idx0,idx1] = get_dih(Ca[idx0], Cb[idx0], Cb[idx1], Ca[idx1]) # matrix of polar coord theta theta6d = np.zeros((nres, nres), dtype=np.float32) theta6d[idx0,idx1] = get_dih(N[idx0], Ca[idx0], Cb[idx0], Cb[idx1]) # matrix of polar coord phi phi6d = np.zeros((nres, nres), dtype=np.float32) phi6d[idx0,idx1] = get_angles(Ca[idx0], Cb[idx0], Cb[idx1]) mask = np.zeros((nres, nres), dtype=np.float32) mask[idx0, idx1] = 1.0 return dist6d, omega6d, theta6d, phi6d, mask