--- license: mit tags: - generated_from_trainer metrics: - accuracy model-index: - name: microsoft-deberta-v3-large_cls_sst2 results: [] --- # microsoft-deberta-v3-large_cls_sst2 This model is a fine-tuned version of [microsoft/deberta-v3-large](https://huggingface.co/microsoft/deberta-v3-large) on [sst2](https://huggingface.co/datasets/sst2) unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2206 - Accuracy: 0.9576 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.2 - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 433 | 0.2420 | 0.9415 | | 0.3716 | 2.0 | 866 | 0.2387 | 0.9404 | | 0.2001 | 3.0 | 1299 | 0.2379 | 0.9461 | | 0.1187 | 4.0 | 1732 | 0.2007 | 0.9610 | | 0.0555 | 5.0 | 2165 | 0.2206 | 0.9576 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0+cu116 - Datasets 2.7.1 - Tokenizers 0.13.2