{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "extract_features": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f947696ea40>"}, "verbose": 1, "policy_kwargs": {":type:": "", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1681485042307165643, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAALzM2z+QAiM/dJjZvQiBQD+0C78/XmSLP03wRT9/QKW/1mEuP7LtKjtwaze+zPuMv/BDrT99vx68EM+xvgXg3j5gKDo/r3DlvXXNCD+SoZq/dKytv/u+KT5s014/+8Ibv+tAPr9LkUI/udShPqYVLD/mGYE+g+0mPzxzAr4+6YE/pVTIP7YAnz/3sCY+q5Q1vxVquz/LSvE6Z6E/P1Wofb9pnDk+KaugP5N2Hj2/4fQ9/WbvPr2qXD9XkR0/uFHCPEOt8z52AW6/4RqiPzdT8T3rQD6/S5FCP7nUoT6mFSw/B4G5PTEfvD5c5VQ+UpbzPsKzPT+P6jq/EoWHv+xU+r4ddbY/PKICwHwcSz/hccQ/sAapvyOOQMDXq6c/8lM/v0SxX7yi4yfAsnOWvu0Y2T8AuME/xaTiObsH4z5+Fx6+uDusPx5qqL+51KE+Amu+v6Wrhj0LOxs+unTNPspVSj/TzqY/dwWGP7sEhT2U7oi+wni7P3ZKSbsSrVs/YB7uvpdnojzdgbY/ToAovssSd72souE+fq9hP4eqFD8fpte+HrtqPyJi9L5eBnA/iOelPutAPr9LkUI/nntKwKYVLD+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAAtv/62AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAAMTTPQAAAACZp+W/AAAAANmKkr0AAAAARZzgPwAAAAARAw2+AAAAAPO0/D8AAAAAvK9QPAAAAAB3//S/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP2EqtQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgO/voz0AAAAAfe/hvwAAAAA9Vbk9AAAAACzwAEAAAAAAGX3uvAAAAAD/CPw/AAAAAOSpYzwAAAAACGnfvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAxXRjYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDvXkO8AAAAALz1AMAAAAAA2KMRPgAAAABqw/Q/AAAAAB2YJL0AAAAAXxvsPwAAAAA/U567AAAAAAh/578AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKpea2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA+9ebPQAAAADq6Oq/AAAAADIfuL0AAAAAtn3hPwAAAADWRMO8AAAAAExs9z8AAAAAqtbZPQAAAAACePe/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJ0RJNM495iMAWyUTegDjAF0lEdAq8Gk5EMLGHV9lChoBkdAnAgPGhmGumgHTegDaAhHQKvDm6I3zc11fZQoaAZHQJ8atNKyv9toB03oA2gIR0CrxbQ3HaN/dX2UKGgGR0CeP09ZzPrwaAdN6ANoCEdAq8ZK9K28ZnV9lChoBkdAnhz/nwG4Z2gHTegDaAhHQKvSKSGrS3N1fZQoaAZHQJsO3ofSx7loB03oA2gIR0Cr1AA6dUbUdX2UKGgGR0CbLNBbfP5YaAdN6ANoCEdAq9Yua6STyXV9lChoBkdAl8+ZON5t32gHTegDaAhHQKvWy+VTrE91fZQoaAZHQJyJySbH6uZoB03oA2gIR0Cr4xlFMIu5dX2UKGgGR0Ca23im2sq8aAdN6ANoCEdAq+TfT1CgLHV9lChoBkdAmzNipzcRDmgHTegDaAhHQKvm7L3bmEJ1fZQoaAZHQJlwHlZHNHJoB03oA2gIR0Cr51Epy6tldX2UKGgGR0CaZp0gr6LwaAdN6ANoCEdAq++oYLsru3V9lChoBkdAnrgUmtyPuGgHTegDaAhHQKvxgnfl6qt1fZQoaAZHQJ5wASUTtb9oB03oA2gIR0Cr86XvphWpdX2UKGgGR0CZ5reTmnwYaAdN6ANoCEdAq/QJnSOR1XV9lChoBkdAm9z3Vf/m1mgHTegDaAhHQKwAea3I+4d1fZQoaAZHQJzEv1Iy0rtoB03oA2gIR0CsAoelTFVDdX2UKGgGR0CbNoBOpKjBaAdN6ANoCEdArASxA+pwTHV9lChoBkdAmSTTM3ZPEmgHTegDaAhHQKwFFi6xxDN1fZQoaAZHQJlN+criEQJoB03oA2gIR0CsDW6u4gA7dX2UKGgGR0Ca2V9Wp6yCaAdN6ANoCEdArA8smplz2nV9lChoBkdAnEpzGo73f2gHTegDaAhHQKwRPUBGQS11fZQoaAZHQJw0C3b212JoB03oA2gIR0CsEZ+1a4c4dX2UKGgGR8B+7kmv4dp7aAdN6ANoCEdArBw8ONHYpXV9lChoBkdAmm9eWrwOOWgHTegDaAhHQKwfQlHBk7R1fZQoaAZHQJXr5pi7TUloB03oA2gIR0CsIdxjawljdX2UKGgGR0CaHhnyNGViaAdN6ANoCEdArCJAku6ErXV9lChoBkdAk+WtgWrOq2gHTegDaAhHQKwqLD6WPcV1fZQoaAZHQJi7DVtoBaNoB03oA2gIR0CsLA5p8F6idX2UKGgGR0CS+fCgK4QSaAdN6ANoCEdArC4YymALA3V9lChoBkdAmMHwxN7BwmgHTegDaAhHQKwucnzg/C91fZQoaAZHQJWDMFRpDeFoB03oA2gIR0CsNyB9b5dodX2UKGgGR0CY07C9AX2vaAdN6ANoCEdArDnMqe9SM3V9lChoBkdAl/MeQuEmIGgHTegDaAhHQKw9Mpw0fo11fZQoaAZHQJdd9JYkmhNoB03oA2gIR0CsPdK6WgOCdX2UKGgGR0CZYUeYlY2baAdN6ANoCEdArEZmzUqhDnV9lChoBkdAkq1wvUSZjWgHTegDaAhHQKxISPhAGB51fZQoaAZHQJZbtnrY5DJoB03oA2gIR0CsSlbFKkEcdX2UKGgGR0CXWoKbrkbQaAdN6ANoCEdArEq5DArQPnV9lChoBkdAloGUcOskp2gHTegDaAhHQKxS2DGLk0d1fZQoaAZHQJRu7doFmnRoB03oA2gIR0CsVVGTC+DfdX2UKGgGR0CW0iuZTho/aAdN6ANoCEdArFh0KPXCj3V9lChoBkdAlP7ZF1B+nmgHTegDaAhHQKxZEebutwJ1fZQoaAZHQJXgNN1yNn5oB03oA2gIR0CsYzfcN6PbdX2UKGgGR0Cbnv7ZnL7oaAdN6ANoCEdArGUC1RceKnV9lChoBkdAlmS5bdJrcmgHTegDaAhHQKxnEvxH5Jt1fZQoaAZHQJbCZSP2f05oB03oA2gIR0CsZ3BE8aGYdX2UKGgGR0CUmliw0O3EaAdN6ANoCEdArG+s7nxJ/XV9lChoBkdAmZDFuBMBZWgHTegDaAhHQKxxbV09yLh1fZQoaAZHQJlS9RKpT/BoB03oA2gIR0CsdC/UF0PpdX2UKGgGR0CbsHmXgLqmaAdN6ANoCEdArHS+C7K7qnV9lChoBkdAnBUNQTEiuGgHTegDaAhHQKyBfXlr/Kh1fZQoaAZHQJwbdIre67NoB03oA2gIR0CshGLHlwLmdX2UKGgGR0CZXst9QXQ/aAdN6ANoCEdArIesaGYa53V9lChoBkdAmvLo/7iyZGgHTegDaAhHQKyIClruYyB1fZQoaAZHQJNtC2sq8UVoB03oA2gIR0Csj99nkDISdX2UKGgGR0CTWLGQ0XP7aAdN6ANoCEdArJHSxkd3jnV9lChoBkdAlrZxlcyFf2gHTegDaAhHQKyUzn003wV1fZQoaAZHQJNdEXMyJsRoB03oA2gIR0CslV7fpD/mdX2UKGgGR0CanLeenQ6ZaAdN6ANoCEdArJ/bZL7GenV9lChoBkdAmQQBzmwJPmgHTegDaAhHQKyhn2ys0YV1fZQoaAZHQJoxtOnEVFhoB03oA2gIR0Cso60mlZX/dX2UKGgGR0CY5cNdqtYCaAdN6ANoCEdArKQOkP+XJHV9lChoBkdAmSGIW+GoJmgHTegDaAhHQKysL6P8yet1fZQoaAZHQJKzWr6tT1loB03oA2gIR0CsreTQ3PzGdX2UKGgGR0CZ7g1h9b5eaAdN6ANoCEdArK/iyGBWgnV9lChoBkdAmdYRo24usmgHTegDaAhHQKywdPWQOnV1fZQoaAZHQJukpljEvTRoB03oA2gIR0CsvBB4t6HCdX2UKGgGR0CbGdiLEUCaaAdN6ANoCEdArL2+ZE2HcnV9lChoBkdAmctEqH4462gHTegDaAhHQKy/5ZYgaFV1fZQoaAZHQJrhnxCpm29oB03oA2gIR0CswEfustCidX2UKGgGR0CXyd+3H7xeaAdN6ANoCEdArMiFWjoIOnV9lChoBkdAmOIoW+GoJmgHTegDaAhHQKzKUKIi1Rd1fZQoaAZHQJlJxZIQOFxoB03oA2gIR0CszF67VawEdX2UKGgGR0CZUeAvL5h0aAdN6ANoCEdArMy4arFOwnV9lChoBkdAmKllhw2l22gHTegDaAhHQKzX5MfzSTh1fZQoaAZHQJvBPDej2zxoB03oA2gIR0Cs2i8lPacqdX2UKGgGR0Ca44L8rI5paAdN6ANoCEdArNw3StvGZXV9lChoBkdAm1grsKLKm2gHTegDaAhHQKzcmhllK9R1fZQoaAZHQJe/1hqj8DVoB03oA2gIR0Cs5O/0dzXCdX2UKGgGR0CXzPe7+T/yaAdN6ANoCEdArOa9UGVzIXV9lChoBkdAmXIspkPMCGgHTegDaAhHQKzoweq7yx11fZQoaAZHQJiTKAlOXVtoB03oA2gIR0Cs6SKKgqVhdX2UKGgGR0CXSlXAM2FWaAdN6ANoCEdArPMF2aDwpnV9lChoBkdAl2A7T6SDAmgHTegDaAhHQKz13SsKb8Z1fZQoaAZHQJaYz5hz/6xoB03oA2gIR0Cs+M06PsAvdX2UKGgGR0CX6d3JxNqQaAdN6ANoCEdArPktwFTvRnV9lChoBkdAmv48vh60IGgHTegDaAhHQK0BRYjB2wF1fZQoaAZHQJrfqT3Zf2NoB03oA2gIR0CtAwK3NLUTdX2UKGgGR0CX/Wo1DSgHaAdN6ANoCEdArQUSagElmnV9lChoBkdAmg/kS7GvOmgHTegDaAhHQK0FchGpdbB1fZQoaAZHQJfIHDZUT+NoB03oA2gIR0CtDg9Ba9sadX2UKGgGR0CX6icJMQEqaAdN6ANoCEdArRCgQQL/j3V9lChoBkdAmmDFiKBNEmgHTegDaAhHQK0T7/8VHnV1fZQoaAZHQJji8p5NXYFoB03oA2gIR0CtFI/8/D+BdX2UKGgGR0CaeDhkAggYaAdN6ANoCEdArR1OQ+2VmnV9lChoBkdAnaFgBkqc3GgHTegDaAhHQK0fDaxHG0h1fZQoaAZHQJtBL961LJ1oB03oA2gIR0CtIUegte2NdX2UKGgGR0Ccd9863iJgaAdN6ANoCEdArSG0yBTXKHVlLg=="}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}