--- license: openrail datasets: - ChristophSchuhmann/improved_aesthetics_6.5plus language: - en --- Based on my GitHub monologs at [Edge Drawing - a Canny alternative](https://github.com/lllyasviel/ControlNet/discussions/318) Controls image generation by edge maps generated with [EdgeDrawing Parameter-Free](https://github.com/CihanTopal/ED_Lib). For usage see the model page on [Civitai.com](https://civitai.com/models/149740). For evaluation see the corresponding .zip files with images. To run your own evaluation you can use [inference.py](https://gitlab.com/-/snippets/3602096). **EdgeDrawing Parameter-Free** ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64c0ec65a2ec8cb2f589233a/jmdCGeMJx4dKFGo44cuEq.png) **Example** sampler=UniPC steps=20 cfg=7.5 seed=0 batch=9 model: v1-5-pruned-emaonly.safetensors cherry-picked: 1/9 prompt: _a detailed high-quality professional photo of swedish woman standing in front of a mirror, dark brown hair, white hat with purple feather_ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64c0ec65a2ec8cb2f589233a/2PSWsmzLdHeVG-i67S7jF.png) **Canndy Edge Detection (default in Automatic1111)** ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64c0ec65a2ec8cb2f589233a/JZTpa-HZfw0NUYnxZ52Iu.png) # Image dataset * [laion2B-en aesthetics>=6.5 dataset](https://huggingface.co/datasets/ChristophSchuhmann/improved_aesthetics_6.5plus) * `--min_image_size 512 --max_aspect_ratio 2 --resize_mode="center_crop" --image_size 512` * resulting in 180k images # Training ``` accelerate launch train_controlnet.py ^ --pretrained_model_name_or_path="runwayml/stable-diffusion-v1-5" ^ --output_dir="control-edgedrawing-[version]-fp16/" ^ --dataset_name="mydataset" ^ --mixed_precision="fp16" ^ --resolution=512 ^ --learning_rate=1e-5 ^ --train_batch_size=1 ^ --gradient_accumulation_steps=4 ^ --gradient_checkpointing ^ --use_8bit_adam ^ --enable_xformers_memory_efficient_attention ^ --set_grads_to_none ^ --seed=0 ``` # Versions **Experiment 4 - control-edgedrawing-cv480edpf-drop0-fp16-checkpoint-90000** Conditioning images generated with [edpf.py](https://gitlab.com/-/snippets/3601881) using [opencv-contrib-python::ximgproc::EdgeDrawing](https://docs.opencv.org/4.8.0/d1/d1c/classcv_1_1ximgproc_1_1EdgeDrawing.html). ``` ed = cv2.ximgproc.createEdgeDrawing() params = cv2.ximgproc.EdgeDrawing.Params() params.PFmode = True ed.setParams(params) edges = ed.detectEdges(image) edge_map = ed.getEdgeImage(edges) ``` 90000 steps (45000 steps on original, 45000 steps with left-right flipped images) **Experiment 3 - control-edgedrawing-cv480edpf-drop0-fp16-checkpoint-45000** see experiment 4. 45000 steps. This is version 0.1 on civitai. **Experiment 2 - control-edgedrawing-default-noisy-drop0-fp16-checkpoint-40000** Images converted with https://github.com/shaojunluo/EDLinePython Default settings are: `smoothed=False` ``` { 'ksize' : 5 , 'sigma' : 1.0 , 'gradientThreshold': 36 , 'anchorThreshold' : 8 , 'scanIntervals' : 1 } ``` `smoothed=True`, but no empty prompts Trained for 40000 steps with default settings => conditioning images are too noisy **Experiment 1 - control-edgedrawing-default-drop50-fp16-checkpoint-40000** Same as experiment 2. Update: bug in algorithm produces too sparse images on default, see https://github.com/shaojunluo/EDLinePython/issues/4 additional arguments: `--proportion_empty_prompts=0.5` Trained for 40000 steps with default settings => empty prompts were probably too excessive # Question and answers **Q: What's the point of another edge control net anyway?** A: 🤷