Model description
Модель детекции номерных знаков автомобилей РФ, в данный момент 2 класса n_p и p_p, обычные номера и полицейские
Intended uses & limitations
Пример использования:
from transformers import AutoModelForObjectDetection, AutoImageProcessor import torch import supervision as sv DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu") model = AutoModelForObjectDetection.from_pretrained('Garon16/rtdetr_r50vd_russia_plate_detector_lightning').to(DEVICE) processor = AutoImageProcessor.from_pretrained('Garon16/rtdetr_r50vd_russia_plate_detector_lightning') path = 'path/to/image' image = Image.open(path) inputs = processor(image, return_tensors="pt").to(DEVICE) with torch.no_grad(): outputs = model(**inputs) w, h = image.size results = processor.post_process_object_detection( outputs, target_sizes=[(h, w)], threshold=0.3) detections = sv.Detections.from_transformers(results[0]).with_nms(0.3) labels = [ model.config.id2label[class_id] for class_id in detections.class_id ] annotated_image = image.copy() annotated_image = sv.BoundingBoxAnnotator().annotate(annotated_image, detections) annotated_image = sv.LabelAnnotator().annotate(annotated_image, detections, labels=labels) grid = sv.create_tiles( [annotated_image], grid_size=(1, 1), single_tile_size=(512, 512), tile_padding_color=sv.Color.WHITE, tile_margin_color=sv.Color.WHITE ) sv.plot_image(grid, size=(10, 10))
Training and evaluation data
Обучал на своём датасете - https://universe.roboflow.com/testcarplate/russian-license-plates-classification-by-this-type
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- seed: 42
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 300
- num_epochs: 20
Training results
Пока не разобрался, как при дообучении лайтингом автоматом всё отправить сюда
Framework versions
- Transformers 4.46.0.dev0
- Pytorch 2.5.0+cu124
- Tokenizers 0.20.1
- Downloads last month
- 55
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for Garon16/rtdetr_r50vd_russia_plate_detector_lightning
Base model
PekingU/rtdetr_r50vd_coco_o365