--- base_model: - UsernameJustAnother/Nemo-12B-Marlin-v5 - Sao10K/MN-12B-Lyra-v1 tags: - merge - mergekit - lazymergekit - UsernameJustAnother/Nemo-12B-Marlin-v5 - Sao10K/MN-12B-Lyra-v1 --- # Lyralin-12B-v1 Lyralin-12B-v1 is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [UsernameJustAnother/Nemo-12B-Marlin-v5](https://huggingface.co/UsernameJustAnother/Nemo-12B-Marlin-v5) * [Sao10K/MN-12B-Lyra-v1](https://huggingface.co/Sao10K/MN-12B-Lyra-v1) ## 🧩 Configuration ```yaml models: - model: UsernameJustAnother/Nemo-12B-Marlin-v5 parameters: density: 0.4 weight: 0.70 - model: Sao10K/MN-12B-Lyra-v1 parameters: density: 0.6 weight: 0.30 merge_method: ties base_model: UsernameJustAnother/Nemo-12B-Marlin-v5 parameters: normalize: true dtype: bfloat16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "GalrionSoftworks/Lyralin-12B-v1" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```