--- base_model: meta-llama/Meta-Llama-3.1-8B-Instruct library_name: peft license: llama3.1 tags: - trl - sft - generated_from_trainer model-index: - name: Llama-31-8B_task-3_180-samples_config-1_full_auto results: [] --- # Llama-31-8B_task-3_180-samples_config-1_full_auto This model is a fine-tuned version of [meta-llama/Meta-Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.3800 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - distributed_type: multi-GPU - gradient_accumulation_steps: 8 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.6152 | 1.0 | 17 | 1.6114 | | 1.4448 | 2.0 | 34 | 1.4188 | | 1.1866 | 3.0 | 51 | 1.2109 | | 1.071 | 4.0 | 68 | 1.1619 | | 1.0559 | 5.0 | 85 | 1.1390 | | 0.9877 | 6.0 | 102 | 1.1245 | | 0.9672 | 7.0 | 119 | 1.1272 | | 0.8614 | 8.0 | 136 | 1.1425 | | 0.7722 | 9.0 | 153 | 1.1850 | | 0.7255 | 10.0 | 170 | 1.2317 | | 0.6638 | 11.0 | 187 | 1.2752 | | 0.4688 | 12.0 | 204 | 1.3816 | | 0.5007 | 13.0 | 221 | 1.3800 | ### Framework versions - PEFT 0.12.0 - Transformers 4.44.0 - Pytorch 2.1.2+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1