--- library_name: transformers license: apache-2.0 base_model: facebook/wav2vec2-base tags: - generated_from_trainer datasets: - superb metrics: - accuracy model-index: - name: wav2vec2-base-finetuned-ks results: - task: name: Audio Classification type: audio-classification dataset: name: superb type: superb config: ks split: validation args: ks metrics: - name: Accuracy type: accuracy value: 0.9835245660488379 --- # wav2vec2-base-finetuned-ks This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the superb dataset. It achieves the following results on the evaluation set: - Loss: 0.0886 - Accuracy: 0.9835 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:------:|:----:|:---------------:|:--------:| | 2.2711 | 1.0 | 400 | 0.5021 | 0.9500 | | 0.8888 | 2.0 | 800 | 0.1725 | 0.9773 | | 0.7851 | 3.0 | 1200 | 0.1099 | 0.9819 | | 0.6176 | 4.0 | 1600 | 0.0968 | 0.9810 | | 0.5318 | 4.9894 | 1995 | 0.0886 | 0.9835 | ### Framework versions - Transformers 4.47.1 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0