{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "extract_features": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f622cda8c00>"}, "verbose": 1, "policy_kwargs": {":type:": "", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1678277980013564933, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAElWrb8Kt/K/2kyfv79q6b/4Pk4+xTg7Pdw/Yr8+1nM/zbkDwDspxL5bAW2/3K4NvAzyiL+GxTa+AJpbP62hTT3iuYs+PzY0vhrw4r6Tij88GQNOQNmZy76pj+G+Q+JOvAJeij/HfwQ/BKEXP+1Pgz/k4jW/jdQZQMihjcCDfuq/W+KpPgGhlj02b1q/mj7DP1kthsDHv1u8qeFsv72rWrxmLy4/1BqSPZ9arb7P7Mu9JcXcv10H0z0Ro7q/PsnbPEwGn0A5Ex88CoVFv3EeY70CXoo/x38EPwShFz/tT4M/KwKjv4Dduj+tyoS+wZ2cv6oBar7xb0c/94wYvbRUzz7xMSa/4Gx2P3+qa7/83PG70lqCP/bUAb9khCc//J0eP0R2ML7V1nK/xCEKP637ib8E6JlAYkMHv2XDbr6H7qw+sNFsv8d/BD8EoRc/7U+DP73+XT8HJXM/LLljPlwqjT/AKOo+CdEJP0lQrr56DHu/pNMYP6QsTEA1Jq0/S+zkPhaipL+wDr49/2ILv+bSIr+v6UW/Q1CPvmMy/j1uhO0/UKqyvqx9GD/RH9s+wG43PQJeij/HfwQ/BKEXP+yKeb+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAAbbdg2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAEtvxvQAAAAD2Aea/AAAAADCi4jwAAAAAOyjtPwAAAAB5urY9AAAAADe7+D8AAAAAKoowvQAAAADdQgHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPbiitgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgECEAj4AAAAAvNTivwAAAAB1fpA9AAAAAOj24D8AAAAAjMQIvAAAAAC+INs/AAAAAE2NEj4AAAAAyYXkvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGb8PTYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBf0JE8AAAAAL0k6r8AAAAAE+PnPQAAAAAp/fU/AAAAAJUE1j0AAAAAXqbcPwAAAADir5o9AAAAAMxE9b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABLTr41AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAcqaLPQAAAADT5e2/AAAAAD7/qz0AAAAA+prkPwAAAACBSko9AAAAAD4X4j8AAAAAZxvgOwAAAABH5PW/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJ8DGieumrOMAWyUTegDjAF0lEdAsXVvZ26kI3V9lChoBkdAm0XZBkZrHmgHTegDaAhHQLF3ohIOH311fZQoaAZHQJqw9TS9du5oB03oA2gIR0Cxd+mZy+6AdX2UKGgGR0Cfhj8fFJg9aAdN6ANoCEdAsXsqTRplBnV9lChoBkdAm7nBL9MsYmgHTegDaAhHQLF9dDst03h1fZQoaAZHQJ3Zk7OmixpoB03oA2gIR0Cxf1VgDzRQdX2UKGgGR0CdJQVRk3CLaAdN6ANoCEdAsX+ZFb3XZ3V9lChoBkdAni7RJEpiJGgHTegDaAhHQLGD3ieNDMN1fZQoaAZHQJ1sop3HJcRoB03oA2gIR0CxhzDP8hs7dX2UKGgGR0CYsCb1h9b5aAdN6ANoCEdAsYkCArhBJXV9lChoBkdAnB1SeI2wV2gHTegDaAhHQLGJQuc+aBt1fZQoaAZHQJtKjYFqzqtoB03oA2gIR0CxjGuzQeFMdX2UKGgGR0Ce5rfnOjZdaAdN6ANoCEdAsY6ffCQ9zXV9lChoBkdAloMFQyhzvWgHTegDaAhHQLGQaGIsRQJ1fZQoaAZHQJt9o1ZTyaxoB03oA2gIR0CxkKxDgIhRdX2UKGgGR0CbP4g00m+kaAdN6ANoCEdAsZVmq+8Gs3V9lChoBkdAmxsIH9m6G2gHTegDaAhHQLGYRuIhyKh1fZQoaAZHQJx7GuuA7PpoB03oA2gIR0CxmhQE+xGEdX2UKGgGR0CZsdQdCE6DaAdN6ANoCEdAsZpW801qFnV9lChoBkdAmTEn7DVH4GgHTegDaAhHQLGdjYigTRJ1fZQoaAZHQJuS4uSOinJoB03oA2gIR0Cxn88HjZL7dX2UKGgGR0CclHxeLNwBaAdN6ANoCEdAsaHcC4jKPnV9lChoBkdAnAFyNjslcGgHTegDaAhHQLGiOyE+Pil1fZQoaAZHQJcwZ/MGHHpoB03oA2gIR0Cxpy5Uo8ZDdX2UKGgGR0CerKA3T/hmaAdN6ANoCEdAsamFbD/EO3V9lChoBkdAmokZGnXNDGgHTegDaAhHQLGrSkI5YHR1fZQoaAZHQJrMIDYAbQ1oB03oA2gIR0Cxq42n0kGBdX2UKGgGR0CdgGk8A7xNaAdN6ANoCEdAsa61m7J4jnV9lChoBkdAnV0KEBbOeWgHTegDaAhHQLGw+H+qBEt1fZQoaAZHQJZIXtnf2sdoB03oA2gIR0Cxs3GCdz4ldX2UKGgGR0CbeFE12q1gaAdN6ANoCEdAsbPTsWweNnV9lChoBkdAm/B7hR64UmgHTegDaAhHQLG4VCuEEkl1fZQoaAZHQJihod5prUNoB03oA2gIR0CxupHzQNTcdX2UKGgGR0Cevgq9XcQAaAdN6ANoCEdAsbxmPxQSBnV9lChoBkdAmxBAzguRLmgHTegDaAhHQLG8qMYMvyt1fZQoaAZHQJa0Iflp48loB03oA2gIR0Cxv+tALRa5dX2UKGgGR0CUiREit7rtaAdN6ANoCEdAscJtKjBVMnV9lChoBkdAl5zRL0z0pWgHTegDaAhHQLHFHLdvbXZ1fZQoaAZHQJsCEnssxwhoB03oA2gIR0CxxYZLdvbXdX2UKGgGR0Cf9JJC0F8paAdN6ANoCEdAscmNyCFsYXV9lChoBkdAl3E8w5/9YWgHTegDaAhHQLHL4aXrt3R1fZQoaAZHQJ024HWz4UNoB03oA2gIR0Cxzb9ycTakdX2UKGgGR0CWpXdfb9IgaAdN6ANoCEdAsc4BCpm29nV9lChoBkdAmK31zySV4WgHTegDaAhHQLHRRUVi4KB1fZQoaAZHQJ1MEka/ATJoB03oA2gIR0Cx1E45ggHNdX2UKGgGR0CfOIPU8V59aAdN6ANoCEdAsdcpy7wrlXV9lChoBkdAnHh/l+3H72gHTegDaAhHQLHXkj2zv7Z1fZQoaAZHQJ5YgBgeA/doB03oA2gIR0Cx2xmphnandX2UKGgGR0CfuveMAFPjaAdN6ANoCEdAsd189yLhrHV9lChoBkdAmO20QbuMM2gHTegDaAhHQLHfY/5Lytp1fZQoaAZHQJhXmJGe+VVoB03oA2gIR0Cx36j/6wdKdX2UKGgGR0CD0wPCEYfoaAdN6ANoCEdAseNrWtlqanV9lChoBkdAoEKYOjIq9WgHTegDaAhHQLHm/7voePt1fZQoaAZHQIfMOuTzNEBoB03oA2gIR0Cx6WMKohpydX2UKGgGR0Cg23JKjBVNaAdN6ANoCEdAsemqJN0vG3V9lChoBkdAoUmWVX3g1mgHTegDaAhHQLHs+ZhrnDB1fZQoaAZHQJB+KcEvCdloB03oA2gIR0Cx71FY2bXpdX2UKGgGR0CeD9gDA8B/aAdN6ANoCEdAsfE1zaK1onV9lChoBkdAoGZLdBSk02gHTegDaAhHQLHxenlnyup1fZQoaAZHQJwbcOavzOJoB03oA2gIR0Cx9gouPFNtdX2UKGgGR0CfdKQpnYg8aAdN6ANoCEdAsflHeJpFkXV9lChoBkdAoAO4u01IiGgHTegDaAhHQLH7L0ngHeJ1fZQoaAZHQJxUkP4EfT1oB03oA2gIR0Cx+3a0QbuMdX2UKGgGR0CeU6CAMDwIaAdN6ANoCEdAsf7Bqxkd3nV9lChoBkdAnYl3xjJ+2GgHTegDaAhHQLIBFeokzGh1fZQoaAZHQJ6qlEhJRO1oB03oA2gIR0CyAyEjX4CZdX2UKGgGR0CgVRcJUo8ZaAdN6ANoCEdAsgOEsxwhn3V9lChoBkdAmGGAbVBlc2gHTegDaAhHQLIIhPEsJ6Z1fZQoaAZHQKECuCW/rSpoB03oA2gIR0CyCvGBvrGBdX2UKGgGR0CUKqjFQ2uQaAdN6ANoCEdAsgzbZvkzXXV9lChoBkdAoG/BMSK3u2gHTegDaAhHQLINJARChOB1fZQoaAZHQISTjzbvgFZoB03oA2gIR0CyEI+3H7xedX2UKGgGR0CbD+HM2WIHaAdN6ANoCEdAshMCaDwpfHV9lChoBkdAkAjRlpXZG2gHTegDaAhHQLIVvlE7W/d1fZQoaAZHQJwztfkWAPNoB03oA2gIR0CyFimQSzw+dX2UKGgGR0CWJIUUwi7kaAdN6ANoCEdAshp0gX/HYHV9lChoBkdAku5hlUZNwmgHTegDaAhHQLIcuJQtSQ51fZQoaAZHQJmOVuMuOCJoB03oA2gIR0CyHpSZa3ZxdX2UKGgGR0CViUEGZ/kOaAdN6ANoCEdAsh7ayyD7InV9lChoBkdAntJekcjqwGgHTegDaAhHQLIiPPepGWl1fZQoaAZHQJjVvxAjY7JoB03oA2gIR0CyJUYcaOxTdX2UKGgGR0CQ1Y8ZUDMeaAdN6ANoCEdAsigo2UB4lnV9lChoBkdAl8jCADq4Y2gHTegDaAhHQLIomIjGDL91fZQoaAZHQIcfTWy1NQFoB03oA2gIR0CyLCa4+bExdX2UKGgGR0CRmxL6k691aAdN6ANoCEdAsi57e7+T/3V9lChoBkdAkoBgkgOjI2gHTegDaAhHQLIwWCRfWtl1fZQoaAZHQIUgNhLGrCFoB03oA2gIR0CyMJ79AHE/dX2UKGgGR0CFKvoZAIIGaAdN6ANoCEdAsjRmWUr08XV9lChoBkdAftHRxcVxj2gHTegDaAhHQLI34+OwPiF1fZQoaAZHQJUhByJbdJtoB03oA2gIR0CyOmCGahHtdX2UKGgGR0CWBVEbHZK4aAdN6ANoCEdAsjqoTufEoHV9lChoBkdAldTJhz/6wmgHTegDaAhHQLI+DO0LMLZ1fZQoaAZHQI5Ik6ij+JhoB03oA2gIR0CyQGfViF0xdX2UKGgGR0CXEJBAfMfSaAdN6ANoCEdAskJKuJUHZHV9lChoBkdAkC4LY02tMmgHTegDaAhHQLJCjpHZsbh1fZQoaAZHQJx27/0dzXBoB03oA2gIR0CyRt1DOTq0dX2UKGgGR0Ca+RbKifxuaAdN6ANoCEdAsko9h7Vrh3V9lChoBkdAncL8Rg7YCmgHTegDaAhHQLJMGKx9oex1fZQoaAZHQJ8am6K+BYpoB03oA2gIR0CyTF9dZ7ojdX2UKGgGR0CgnZSsbNr1aAdN6ANoCEdAsk+lgeA/cHVlLg=="}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "False", "Numpy": "1.22.4", "Gym": "0.21.0"}}