File size: 3,823 Bytes
3e1357a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
import math
import torch
import numpy as np
import torch.nn as nn
import torch.nn.functional as F
from typing import List, Optional, Tuple
from .configuration import AVHubertConfig
from fairseq.utils import index_put
from fairseq.modules import LayerNorm, SamePad
from fairseq.models.wav2vec.wav2vec2 import TransformerSentenceEncoderLayer
from fairseq.modules.transformer_sentence_encoder import init_bert_params


class TransformerEncoder(nn.Module):
    def __init__(self, config: AVHubertConfig) -> None:
        super().__init__()

        self.dropout = config.dropout
        self.embedding_dim = config.encoder_embed_dim

        self.pos_conv = nn.Conv1d(
            self.embedding_dim,
            self.embedding_dim,
            kernel_size=config.conv_pos,
            padding=config.conv_pos // 2,
            groups=config.conv_pos_groups,
        )
        dropout = 0
        std = math.sqrt((4 * (1.0 - dropout)) / (config.conv_pos * self.embedding_dim))
        nn.init.normal_(self.pos_conv.weight, mean=0, std=std)
        nn.init.constant_(self.pos_conv.bias, 0)

        self.pos_conv = nn.utils.weight_norm(
            self.pos_conv, name="weight", dim=2
        )
        self.pos_conv = nn.Sequential(self.pos_conv, SamePad(config.conv_pos), nn.GELU())

        self.layers = nn.ModuleList(
            [
                TransformerSentenceEncoderLayer(
                    embedding_dim=self.embedding_dim,
                    ffn_embedding_dim=config.encoder_ffn_embed_dim,
                    num_attention_heads=config.encoder_attention_heads,
                    dropout=self.dropout,
                    attention_dropout=config.attention_dropout,
                    activation_dropout=config.activation_dropout,
                    activation_fn=config.activation_fn,
                    layer_norm_first=config.layer_norm_first,
                )
                for _ in range(config.encoder_layers)
            ]
        )

        self.layer_norm_first = config.layer_norm_first
        self.layer_norm = LayerNorm(self.embedding_dim)
        self.layerdrop = config.encoder_layerdrop

        self.apply(init_bert_params)

    def forward(
        self,
        x: torch.Tensor,
        padding_mask: Optional[torch.Tensor] = None,
        layer: Optional[int] = None,
    ) -> Tuple[torch.Tensor, List[Tuple[torch.Tensor, torch.Tensor]]]:
        x, layer_results = self.extract_features(x, padding_mask, layer)
        if self.layer_norm_first and layer is None:
            x = self.layer_norm(x)
        return x, layer_results

    def extract_features(
        self,
        x: torch.Tensor,
        padding_mask: Optional[torch.Tensor] = None,
        tgt_layer: Optional[int] = None,
    ) -> Tuple[torch.Tensor, List[Tuple[torch.Tensor, torch.Tensor]]]:
        if padding_mask is not None:
            x = index_put(x, padding_mask, 0)

        x_conv = self.pos_conv(x.transpose(1, 2))
        x_conv = x_conv.transpose(1, 2)
        x = x + x_conv

        if not self.layer_norm_first:
            x = self.layer_norm(x)

        x = F.dropout(x, p=self.dropout, training=self.training)

        # B x T x C -> T x B x C
        x = x.transpose(0, 1)

        layer_results = []
        r = None
        for i, layer in enumerate(self.layers):
            dropout_probability = np.random.random()
            if not self.training or (dropout_probability > self.layerdrop):
                x, z = layer(x, self_attn_padding_mask=padding_mask, need_weights=False)
                if tgt_layer is not None:
                    layer_results.append((x, z))
            if i == tgt_layer:
                r = x
                break

        if r is not None:
            x = r

        # T x B x C -> B x T x C
        x = x.transpose(0, 1)

        return x, layer_results