add LLaDA-8B-Instruct
Browse files- config.json +54 -0
- configuration_llada.py +463 -0
- generation_config.json +6 -0
- model-00001-of-00006.safetensors +3 -0
- model-00002-of-00006.safetensors +3 -0
- model-00003-of-00006.safetensors +3 -0
- model-00004-of-00006.safetensors +3 -0
- model-00005-of-00006.safetensors +3 -0
- model-00006-of-00006.safetensors +3 -0
- model.safetensors.index.json +298 -0
- modeling_llada.py +1493 -0
- special_tokens_map.json +38 -0
- tokenizer.json +0 -0
- tokenizer_config.json +2183 -0
config.json
ADDED
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"activation_type": "silu",
|
3 |
+
"alibi": false,
|
4 |
+
"alibi_bias_max": 8.0,
|
5 |
+
"architectures": [
|
6 |
+
"LLaDAModelLM"
|
7 |
+
],
|
8 |
+
"attention_dropout": 0.0,
|
9 |
+
"attention_layer_norm": false,
|
10 |
+
"attention_layer_norm_with_affine": true,
|
11 |
+
"auto_map": {
|
12 |
+
"AutoConfig": "configuration_llada.LLaDAConfig",
|
13 |
+
"AutoModelForCausalLM": "modeling_llada.LLaDAModelLM",
|
14 |
+
"AutoModel": "modeling_llada.LLaDAModelLM"
|
15 |
+
},
|
16 |
+
"bias_for_layer_norm": false,
|
17 |
+
"block_group_size": 1,
|
18 |
+
"block_type": "llama",
|
19 |
+
"d_model": 4096,
|
20 |
+
"embedding_dropout": 0.0,
|
21 |
+
"embedding_size": 126464,
|
22 |
+
"eos_token_id": 126081,
|
23 |
+
"flash_attention": false,
|
24 |
+
"include_bias": false,
|
25 |
+
"include_qkv_bias": false,
|
26 |
+
"init_cutoff_factor": null,
|
27 |
+
"init_device": "meta",
|
28 |
+
"init_fn": "mitchell",
|
29 |
+
"init_std": 0.02,
|
30 |
+
"input_emb_norm": false,
|
31 |
+
"layer_norm_type": "rms",
|
32 |
+
"layer_norm_with_affine": true,
|
33 |
+
"mask_token_id": 126336,
|
34 |
+
"max_sequence_length": 4096,
|
35 |
+
"mlp_hidden_size": 12288,
|
36 |
+
"mlp_ratio": 4,
|
37 |
+
"model_type": "llada",
|
38 |
+
"multi_query_attention": null,
|
39 |
+
"n_heads": 32,
|
40 |
+
"n_kv_heads": 32,
|
41 |
+
"n_layers": 32,
|
42 |
+
"pad_token_id": 126081,
|
43 |
+
"precision": "amp_bf16",
|
44 |
+
"residual_dropout": 0.0,
|
45 |
+
"rms_norm_eps": 1e-05,
|
46 |
+
"rope": true,
|
47 |
+
"rope_full_precision": true,
|
48 |
+
"rope_theta": 500000.0,
|
49 |
+
"scale_logits": false,
|
50 |
+
"transformers_version": "4.46.3",
|
51 |
+
"use_cache": false,
|
52 |
+
"vocab_size": 126464,
|
53 |
+
"weight_tying": false
|
54 |
+
}
|
configuration_llada.py
ADDED
@@ -0,0 +1,463 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
LLaDA configuration
|
3 |
+
"""
|
4 |
+
from transformers import AutoConfig, PretrainedConfig
|
5 |
+
|
6 |
+
from enum import Enum
|
7 |
+
from os import PathLike
|
8 |
+
from typing import Union
|
9 |
+
from dataclasses import asdict, dataclass, field
|
10 |
+
from glob import glob
|
11 |
+
from pathlib import Path
|
12 |
+
from typing import (
|
13 |
+
Any,
|
14 |
+
Dict,
|
15 |
+
Iterable,
|
16 |
+
List,
|
17 |
+
Optional,
|
18 |
+
Tuple,
|
19 |
+
Type,
|
20 |
+
TypeVar,
|
21 |
+
Union,
|
22 |
+
cast,
|
23 |
+
)
|
24 |
+
|
25 |
+
|
26 |
+
__all__ = [
|
27 |
+
"ActivationType",
|
28 |
+
"ActivationCheckpointingStrategy",
|
29 |
+
"BlockType",
|
30 |
+
"LayerNormType",
|
31 |
+
"InitFnType",
|
32 |
+
"ModelConfig",
|
33 |
+
]
|
34 |
+
|
35 |
+
PathOrStr = Union[str, PathLike]
|
36 |
+
|
37 |
+
|
38 |
+
class StrEnum(str, Enum):
|
39 |
+
"""
|
40 |
+
This is equivalent to Python's :class:`enum.StrEnum` since version 3.11.
|
41 |
+
We include this here for compatibility with older version of Python.
|
42 |
+
"""
|
43 |
+
|
44 |
+
def __str__(self) -> str:
|
45 |
+
return self.value
|
46 |
+
|
47 |
+
def __repr__(self) -> str:
|
48 |
+
return f"'{str(self)}'"
|
49 |
+
|
50 |
+
|
51 |
+
class LayerNormType(StrEnum):
|
52 |
+
default = "default"
|
53 |
+
"""
|
54 |
+
The default LayerNorm implementation, equivalent to PyTorch's built-in version.
|
55 |
+
"""
|
56 |
+
|
57 |
+
low_precision = "low_precision"
|
58 |
+
"""
|
59 |
+
A low-precision version of the default LayerNorm.
|
60 |
+
"""
|
61 |
+
|
62 |
+
rms = "rms"
|
63 |
+
"""
|
64 |
+
An RMSNorm implementation. When using ``torch.compile`` this is
|
65 |
+
probably the fastest implementation.
|
66 |
+
"""
|
67 |
+
|
68 |
+
gemma_rms = "gemma_rms"
|
69 |
+
"""
|
70 |
+
An RMSNorm implementation by gemmma. When using ``torch.compile`` this is
|
71 |
+
probably the fastest implementation.
|
72 |
+
"""
|
73 |
+
|
74 |
+
amd_compatible = "amd_compatible"
|
75 |
+
"""
|
76 |
+
LayerNorm implemented manually to work around an issue with ROCm.
|
77 |
+
"""
|
78 |
+
|
79 |
+
|
80 |
+
class ActivationType(StrEnum):
|
81 |
+
gelu = "gelu"
|
82 |
+
relu = "relu"
|
83 |
+
silu = "silu"
|
84 |
+
swiglu = "swiglu"
|
85 |
+
|
86 |
+
|
87 |
+
class BlockType(StrEnum):
|
88 |
+
sequential = "sequential"
|
89 |
+
parallel = "parallel"
|
90 |
+
|
91 |
+
llama = "llama"
|
92 |
+
"""
|
93 |
+
A block similar to the sequential block with slightly different
|
94 |
+
implementations of operations like attention to imitate the behavior of Llama.
|
95 |
+
"""
|
96 |
+
|
97 |
+
|
98 |
+
class InitFnType(StrEnum):
|
99 |
+
mitchell = "mitchell"
|
100 |
+
"""
|
101 |
+
The strategy suggested to us by Mitchell Wortsman from UW.
|
102 |
+
This uses a truncated normal distribution with an adaptive standard deviation that depends
|
103 |
+
on the size of the weights as well as the depth of the layer.
|
104 |
+
"""
|
105 |
+
|
106 |
+
normal = "normal"
|
107 |
+
"""
|
108 |
+
All weights are initialized from the same normal distribution.
|
109 |
+
"""
|
110 |
+
|
111 |
+
kaiming_normal = "kaiming_normal"
|
112 |
+
"""
|
113 |
+
All weights are initialized with the Kaiming method from a normal distribution.
|
114 |
+
Note this currently won't work with FSDP.
|
115 |
+
"""
|
116 |
+
|
117 |
+
fan_in = "fan_in"
|
118 |
+
"""
|
119 |
+
"Fan-in variance scaling", i.e. normal with a standard deviation of ``1/sqrt(d_in)`` where ``d_in``
|
120 |
+
is the input dimensionality of the kernel.
|
121 |
+
"""
|
122 |
+
|
123 |
+
full_megatron = "full_megatron"
|
124 |
+
"""
|
125 |
+
This is what metaseq calls "full megatron init". It is the init used for Llama 2.
|
126 |
+
"""
|
127 |
+
|
128 |
+
|
129 |
+
@dataclass
|
130 |
+
class ModelConfig():
|
131 |
+
"""
|
132 |
+
LLaDA (model) configuration.
|
133 |
+
"""
|
134 |
+
|
135 |
+
# Note that the defaults for these attributes are equivalent to the base GPT2 model.
|
136 |
+
|
137 |
+
d_model: int = 768
|
138 |
+
"""
|
139 |
+
The hidden size of the model.
|
140 |
+
"""
|
141 |
+
|
142 |
+
n_heads: int = 12
|
143 |
+
"""
|
144 |
+
The number of self-attention heads.
|
145 |
+
"""
|
146 |
+
|
147 |
+
n_kv_heads: Optional[int] = None
|
148 |
+
"""
|
149 |
+
The number of heads to use for keys and values. Defaults to `n_heads`.
|
150 |
+
Set this to ``None`` or ``n_heads`` for normal multi-head attention.
|
151 |
+
Set this to 1 for multi-query attention.
|
152 |
+
Set it to some in-between value for Llama2-style grouped query attention.
|
153 |
+
"""
|
154 |
+
|
155 |
+
n_layers: int = 12
|
156 |
+
"""
|
157 |
+
The number of layers/blocks.
|
158 |
+
"""
|
159 |
+
|
160 |
+
mlp_ratio: int = 4
|
161 |
+
"""
|
162 |
+
The ratio of the inner MLP dimensionality to ``d_model``.
|
163 |
+
This is only used when ``mlp_hidden_size`` is not set.
|
164 |
+
"""
|
165 |
+
|
166 |
+
mlp_hidden_size: Optional[int] = None
|
167 |
+
"""
|
168 |
+
Set the exact hidden size for the MLP. Otherwise the inner MLP hidden size will be set to `mlp_ratio * d_model`.
|
169 |
+
"""
|
170 |
+
|
171 |
+
activation_type: ActivationType = ActivationType.swiglu
|
172 |
+
"""
|
173 |
+
The activation function to use within the MLP layers.
|
174 |
+
"""
|
175 |
+
|
176 |
+
block_type: BlockType = BlockType.sequential
|
177 |
+
"""
|
178 |
+
The transformer block implementation.
|
179 |
+
"""
|
180 |
+
|
181 |
+
block_group_size: int = 1
|
182 |
+
"""
|
183 |
+
The number of blocks to group together into a single parent block.
|
184 |
+
This has no affect on the number of parameters in the model and is only used to wrap groups
|
185 |
+
of blocks together with a single FSDP wrapper during training.
|
186 |
+
"""
|
187 |
+
|
188 |
+
alibi: bool = False
|
189 |
+
"""
|
190 |
+
If ``True``, use ALiBi embeddings. Mutually exclusive with ``rope``.
|
191 |
+
"""
|
192 |
+
|
193 |
+
alibi_bias_max: float = 8.0
|
194 |
+
"""
|
195 |
+
Maximum absolute value of ALiBi bias.
|
196 |
+
"""
|
197 |
+
|
198 |
+
rope: bool = False
|
199 |
+
"""
|
200 |
+
Use rotary positional embeddings (RoPE). Mutually exclusive with ``alibi``.
|
201 |
+
"""
|
202 |
+
|
203 |
+
rope_full_precision: bool = True
|
204 |
+
"""
|
205 |
+
If ``True``, apply RoPE embeddings at full precision regardless of the input type. Otherwise,
|
206 |
+
apply RoPE at the precision of the input.
|
207 |
+
"""
|
208 |
+
|
209 |
+
flash_attention: bool = False
|
210 |
+
"""
|
211 |
+
If ``True``, use ``FlashAttention``.
|
212 |
+
"""
|
213 |
+
|
214 |
+
attention_dropout: float = 0.1
|
215 |
+
"""
|
216 |
+
The dropout probability within the attention modules.
|
217 |
+
"""
|
218 |
+
|
219 |
+
multi_query_attention: Optional[bool] = None
|
220 |
+
"""
|
221 |
+
Use the Multi-Query formulation of attention used in PaLM. This reduces the number of parameters
|
222 |
+
and is more efficient during inference.
|
223 |
+
"""
|
224 |
+
|
225 |
+
attention_layer_norm: bool = False
|
226 |
+
"""
|
227 |
+
Apply layer norm to the keys and queries within the attention mechanism.
|
228 |
+
This can help stabilize training.
|
229 |
+
"""
|
230 |
+
|
231 |
+
residual_dropout: float = 0.1
|
232 |
+
"""
|
233 |
+
The dropout probability for the MLP and attention output within each block.
|
234 |
+
"""
|
235 |
+
|
236 |
+
embedding_dropout: float = 0.1
|
237 |
+
"""
|
238 |
+
The dropout probability for embeddings.
|
239 |
+
"""
|
240 |
+
|
241 |
+
input_emb_norm: bool = False
|
242 |
+
"""
|
243 |
+
An input hidden_states norm implementation by gemmma.
|
244 |
+
"""
|
245 |
+
|
246 |
+
layer_norm_type: LayerNormType = LayerNormType.default
|
247 |
+
"""
|
248 |
+
The layernorm implementation to use.
|
249 |
+
"""
|
250 |
+
|
251 |
+
layer_norm_with_affine: bool = True
|
252 |
+
"""
|
253 |
+
Whether to include bias and weight parameters for the layer norms.
|
254 |
+
This only affects layer norms that are immediately followed by a linear layer in the forward pass,
|
255 |
+
so everything except QK-norms. To turn off affines for QK norms as well, set :attr:`attention_layer_norm_with_affine`
|
256 |
+
to ``False``.
|
257 |
+
"""
|
258 |
+
|
259 |
+
rms_norm_eps: float = 1e-05
|
260 |
+
"""
|
261 |
+
The rms layernorm eps param.
|
262 |
+
"""
|
263 |
+
|
264 |
+
attention_layer_norm_with_affine: bool = True
|
265 |
+
"""
|
266 |
+
Toggle affine transform for the QK norms.
|
267 |
+
"""
|
268 |
+
|
269 |
+
max_sequence_length: int = 1024
|
270 |
+
"""
|
271 |
+
The maximum input sequence length supported by the model.
|
272 |
+
"""
|
273 |
+
|
274 |
+
rope_theta: float = 10000.0
|
275 |
+
"""
|
276 |
+
The rope base param.
|
277 |
+
"""
|
278 |
+
|
279 |
+
include_qkv_bias: Optional[bool] = False
|
280 |
+
"""
|
281 |
+
Whether or not to include bias parameters in qkv linear layers.
|
282 |
+
"""
|
283 |
+
|
284 |
+
include_bias: bool = False
|
285 |
+
"""
|
286 |
+
Whether or not to include bias parameters in linear layers.
|
287 |
+
In PaLM, they got rid of all bias terms because they found that large
|
288 |
+
models tend to have near 0 bias terms anyway.
|
289 |
+
"""
|
290 |
+
|
291 |
+
bias_for_layer_norm: Optional[bool] = None
|
292 |
+
"""
|
293 |
+
Whether or not to include bias parameters in layer norm.
|
294 |
+
This is separate from the include_bias parameter, because of a ROCm crash when biases are disabled in
|
295 |
+
layer norm.
|
296 |
+
When this is None (the default), it inherits the setting from include_bias.
|
297 |
+
"""
|
298 |
+
|
299 |
+
scale_logits: bool = False
|
300 |
+
"""
|
301 |
+
If ``True``, scale the output logits by ``1 / sqrt(d_model)``.
|
302 |
+
"""
|
303 |
+
|
304 |
+
vocab_size: int = 50257
|
305 |
+
"""
|
306 |
+
Vocabulary size of the model.
|
307 |
+
"""
|
308 |
+
|
309 |
+
embedding_size: Optional[int] = 50304
|
310 |
+
"""
|
311 |
+
The number of embeddings, i.e. the number of tokens. If set to ``None`` it will default
|
312 |
+
to ``vocab_size``. If ``vocab_size`` is not a multiple of 128, setting this to the
|
313 |
+
next multiple of 128 that's greater than ``vocab_size`` can improve throughput
|
314 |
+
substantially.
|
315 |
+
"""
|
316 |
+
|
317 |
+
weight_tying: bool = True
|
318 |
+
"""
|
319 |
+
Whether to tie output linear weights to the input embedding.
|
320 |
+
"""
|
321 |
+
|
322 |
+
eos_token_id: int = 50256
|
323 |
+
"""
|
324 |
+
The ID of the end-of-sentence special token.
|
325 |
+
"""
|
326 |
+
|
327 |
+
pad_token_id: int = 50256
|
328 |
+
"""
|
329 |
+
The ID of the token to use for padding. Defaults to the ID of the EOS token.
|
330 |
+
"""
|
331 |
+
|
332 |
+
mask_token_id: Optional[int] = 50256
|
333 |
+
"""
|
334 |
+
The ID of the token to use for mask token. Defaults to the ID of the EOS token.
|
335 |
+
"""
|
336 |
+
|
337 |
+
init_device: Optional[str] = None
|
338 |
+
"""
|
339 |
+
The torch device to use when initializing the model parameters, e.g. "cpu", "cuda:0", "meta".
|
340 |
+
"""
|
341 |
+
|
342 |
+
init_fn: InitFnType = InitFnType.normal
|
343 |
+
"""
|
344 |
+
The weight initialization strategy.
|
345 |
+
"""
|
346 |
+
|
347 |
+
init_std: float = 0.02
|
348 |
+
"""
|
349 |
+
The standard deviation to use when initializing weights with a "fixed distribution" ``init_fn``, such
|
350 |
+
as "normal".
|
351 |
+
"""
|
352 |
+
|
353 |
+
init_cutoff_factor: Optional[float] = None
|
354 |
+
"""
|
355 |
+
A positive factor used to scale the cutoff values when initializing weights with a "fixed distribution" ``init_fn``, such
|
356 |
+
as "normal". Setting this to None means values are not cutoff.
|
357 |
+
"""
|
358 |
+
|
359 |
+
precision: Optional[str] = None
|
360 |
+
"""
|
361 |
+
Precision used to train/evaluate with. You shouldn't set this directly.
|
362 |
+
See :data:`TrainConfig.precision` instead.
|
363 |
+
"""
|
364 |
+
|
365 |
+
@property
|
366 |
+
def effective_n_kv_heads(self) -> int:
|
367 |
+
if self.n_kv_heads is None:
|
368 |
+
if self.multi_query_attention is True:
|
369 |
+
return 1
|
370 |
+
else:
|
371 |
+
return self.n_heads
|
372 |
+
else:
|
373 |
+
if self.multi_query_attention is None:
|
374 |
+
return self.n_kv_heads
|
375 |
+
if self.multi_query_attention:
|
376 |
+
n_kv_heads_should_be = 1
|
377 |
+
else:
|
378 |
+
n_kv_heads_should_be = self.n_heads
|
379 |
+
if self.n_kv_heads == n_kv_heads_should_be:
|
380 |
+
return n_kv_heads_should_be
|
381 |
+
else:
|
382 |
+
raise Exception(
|
383 |
+
"You can't set `multi_query_attention` and `n_kv_heads` at the same time."
|
384 |
+
)
|
385 |
+
|
386 |
+
class ActivationCheckpointingStrategy(StrEnum):
|
387 |
+
whole_layer = "whole_layer"
|
388 |
+
"""
|
389 |
+
Checkpoint every transformer layer.
|
390 |
+
"""
|
391 |
+
|
392 |
+
one_in_two = "one_in_two"
|
393 |
+
"""
|
394 |
+
Checkpoint one in two transformer layers.
|
395 |
+
"""
|
396 |
+
|
397 |
+
one_in_three = "one_in_three"
|
398 |
+
"""
|
399 |
+
Checkpoint one in three transformer layers.
|
400 |
+
"""
|
401 |
+
|
402 |
+
one_in_four = "one_in_four"
|
403 |
+
"""
|
404 |
+
Checkpoint one in four transformer layers.
|
405 |
+
"""
|
406 |
+
|
407 |
+
two_in_three = "two_in_three"
|
408 |
+
"""
|
409 |
+
Checkpoint two out of every three transformer layers.
|
410 |
+
"""
|
411 |
+
|
412 |
+
three_in_four = "three_in_four"
|
413 |
+
"""
|
414 |
+
Checkpoint three out of four of every transformer layers.
|
415 |
+
"""
|
416 |
+
|
417 |
+
four_in_five = "four_in_five"
|
418 |
+
"""
|
419 |
+
Checkpoint four out of five of every transformer layers.
|
420 |
+
"""
|
421 |
+
|
422 |
+
nine_in_ten = "nine_in_ten"
|
423 |
+
"""
|
424 |
+
Checkpoint nine out of ten of every transformer layers.
|
425 |
+
"""
|
426 |
+
|
427 |
+
fine_grained = "fine_grained"
|
428 |
+
"""
|
429 |
+
Focus checkpointing on where it is cheap to recompute and saves most memory.
|
430 |
+
"""
|
431 |
+
|
432 |
+
|
433 |
+
class LLaDAConfig(PretrainedConfig):
|
434 |
+
model_type = "llada"
|
435 |
+
keys_to_ignore_at_inference = ["past_key_values"] # TODO: confirm
|
436 |
+
|
437 |
+
def __init__(self, use_cache: bool = False, **kwargs):
|
438 |
+
model_config = ModelConfig()
|
439 |
+
all_kwargs = model_config.__dict__
|
440 |
+
all_kwargs.update(kwargs)
|
441 |
+
all_kwargs.update({"use_cache": use_cache})
|
442 |
+
all_kwargs.update(
|
443 |
+
{
|
444 |
+
"architectures": all_kwargs.get("architectures", ["LLaDAModelLM"])
|
445 |
+
}
|
446 |
+
)
|
447 |
+
super().__init__(**all_kwargs)
|
448 |
+
|
449 |
+
@property
|
450 |
+
def num_attention_heads(self):
|
451 |
+
return self.n_heads
|
452 |
+
|
453 |
+
@property
|
454 |
+
def num_hidden_layers(self):
|
455 |
+
return self.n_layers
|
456 |
+
|
457 |
+
@property
|
458 |
+
def hidden_size(self):
|
459 |
+
return self.d_model
|
460 |
+
|
461 |
+
|
462 |
+
# Register the config class so that it is available for transformer pipelines, auto-loading etc.
|
463 |
+
AutoConfig.register("llada", LLaDAConfig)
|
generation_config.json
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"bos_token_id": 126080,
|
4 |
+
"eos_token_id": 126081,
|
5 |
+
"transformers_version": "4.38.2"
|
6 |
+
}
|
model-00001-of-00006.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ff6699df9635a267fb4ac801ea8012d39b21bb22ed290d5a57128521b889c230
|
3 |
+
size 2109747184
|
model-00002-of-00006.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b8ddf571b47f57ce654913877f3625d2c7b9a4c3f81cb6f41f6c3055473b0281
|
3 |
+
size 2948598128
|
model-00003-of-00006.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8347db2fd61a3b5bad2970c2f83ecb84b93632e276a41ca169dcc5efae15462c
|
3 |
+
size 2986883656
|
model-00004-of-00006.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:93d8706872e7432d5cd40c9a61f9f9d270c101828cef2adaf27c67743d3dcf1a
|
3 |
+
size 2952797224
|
model-00005-of-00006.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ff5f765eb7ec8bfdbe3b962a9e920d71de43d55e04eb4844710c0efcc8855092
|
3 |
+
size 2919239128
|
model-00006-of-00006.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f25d4cc57b24a79a840d49c3b25d9a22dd5caf3a9766f591e4625377901194e2
|
3 |
+
size 2113931792
|
model.safetensors.index.json
ADDED
@@ -0,0 +1,298 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_size": 16031162368
|
4 |
+
},
|
5 |
+
"weight_map": {
|
6 |
+
"model.transformer.blocks.0.attn_norm.weight": "model-00003-of-00006.safetensors",
|
7 |
+
"model.transformer.blocks.0.attn_out.weight": "model-00001-of-00006.safetensors",
|
8 |
+
"model.transformer.blocks.0.ff_norm.weight": "model-00003-of-00006.safetensors",
|
9 |
+
"model.transformer.blocks.0.ff_out.weight": "model-00002-of-00006.safetensors",
|
10 |
+
"model.transformer.blocks.0.ff_proj.weight": "model-00004-of-00006.safetensors",
|
11 |
+
"model.transformer.blocks.0.k_proj.weight": "model-00003-of-00006.safetensors",
|
12 |
+
"model.transformer.blocks.0.q_proj.weight": "model-00003-of-00006.safetensors",
|
13 |
+
"model.transformer.blocks.0.up_proj.weight": "model-00005-of-00006.safetensors",
|
14 |
+
"model.transformer.blocks.0.v_proj.weight": "model-00004-of-00006.safetensors",
|
15 |
+
"model.transformer.blocks.1.attn_norm.weight": "model-00003-of-00006.safetensors",
|
16 |
+
"model.transformer.blocks.1.attn_out.weight": "model-00001-of-00006.safetensors",
|
17 |
+
"model.transformer.blocks.1.ff_norm.weight": "model-00003-of-00006.safetensors",
|
18 |
+
"model.transformer.blocks.1.ff_out.weight": "model-00002-of-00006.safetensors",
|
19 |
+
"model.transformer.blocks.1.ff_proj.weight": "model-00004-of-00006.safetensors",
|
20 |
+
"model.transformer.blocks.1.k_proj.weight": "model-00003-of-00006.safetensors",
|
21 |
+
"model.transformer.blocks.1.q_proj.weight": "model-00003-of-00006.safetensors",
|
22 |
+
"model.transformer.blocks.1.up_proj.weight": "model-00005-of-00006.safetensors",
|
23 |
+
"model.transformer.blocks.1.v_proj.weight": "model-00004-of-00006.safetensors",
|
24 |
+
"model.transformer.blocks.10.attn_norm.weight": "model-00003-of-00006.safetensors",
|
25 |
+
"model.transformer.blocks.10.attn_out.weight": "model-00001-of-00006.safetensors",
|
26 |
+
"model.transformer.blocks.10.ff_norm.weight": "model-00003-of-00006.safetensors",
|
27 |
+
"model.transformer.blocks.10.ff_out.weight": "model-00002-of-00006.safetensors",
|
28 |
+
"model.transformer.blocks.10.ff_proj.weight": "model-00004-of-00006.safetensors",
|
29 |
+
"model.transformer.blocks.10.k_proj.weight": "model-00003-of-00006.safetensors",
|
30 |
+
"model.transformer.blocks.10.q_proj.weight": "model-00003-of-00006.safetensors",
|
31 |
+
"model.transformer.blocks.10.up_proj.weight": "model-00005-of-00006.safetensors",
|
32 |
+
"model.transformer.blocks.10.v_proj.weight": "model-00004-of-00006.safetensors",
|
33 |
+
"model.transformer.blocks.11.attn_norm.weight": "model-00003-of-00006.safetensors",
|
34 |
+
"model.transformer.blocks.11.attn_out.weight": "model-00001-of-00006.safetensors",
|
35 |
+
"model.transformer.blocks.11.ff_norm.weight": "model-00003-of-00006.safetensors",
|
36 |
+
"model.transformer.blocks.11.ff_out.weight": "model-00002-of-00006.safetensors",
|
37 |
+
"model.transformer.blocks.11.ff_proj.weight": "model-00004-of-00006.safetensors",
|
38 |
+
"model.transformer.blocks.11.k_proj.weight": "model-00003-of-00006.safetensors",
|
39 |
+
"model.transformer.blocks.11.q_proj.weight": "model-00003-of-00006.safetensors",
|
40 |
+
"model.transformer.blocks.11.up_proj.weight": "model-00006-of-00006.safetensors",
|
41 |
+
"model.transformer.blocks.11.v_proj.weight": "model-00004-of-00006.safetensors",
|
42 |
+
"model.transformer.blocks.12.attn_norm.weight": "model-00003-of-00006.safetensors",
|
43 |
+
"model.transformer.blocks.12.attn_out.weight": "model-00001-of-00006.safetensors",
|
44 |
+
"model.transformer.blocks.12.ff_norm.weight": "model-00003-of-00006.safetensors",
|
45 |
+
"model.transformer.blocks.12.ff_out.weight": "model-00002-of-00006.safetensors",
|
46 |
+
"model.transformer.blocks.12.ff_proj.weight": "model-00004-of-00006.safetensors",
|
47 |
+
"model.transformer.blocks.12.k_proj.weight": "model-00003-of-00006.safetensors",
|
48 |
+
"model.transformer.blocks.12.q_proj.weight": "model-00003-of-00006.safetensors",
|
49 |
+
"model.transformer.blocks.12.up_proj.weight": "model-00006-of-00006.safetensors",
|
50 |
+
"model.transformer.blocks.12.v_proj.weight": "model-00004-of-00006.safetensors",
|
51 |
+
"model.transformer.blocks.13.attn_norm.weight": "model-00003-of-00006.safetensors",
|
52 |
+
"model.transformer.blocks.13.attn_out.weight": "model-00001-of-00006.safetensors",
|
53 |
+
"model.transformer.blocks.13.ff_norm.weight": "model-00003-of-00006.safetensors",
|
54 |
+
"model.transformer.blocks.13.ff_out.weight": "model-00002-of-00006.safetensors",
|
55 |
+
"model.transformer.blocks.13.ff_proj.weight": "model-00004-of-00006.safetensors",
|
56 |
+
"model.transformer.blocks.13.k_proj.weight": "model-00003-of-00006.safetensors",
|
57 |
+
"model.transformer.blocks.13.q_proj.weight": "model-00003-of-00006.safetensors",
|
58 |
+
"model.transformer.blocks.13.up_proj.weight": "model-00006-of-00006.safetensors",
|
59 |
+
"model.transformer.blocks.13.v_proj.weight": "model-00004-of-00006.safetensors",
|
60 |
+
"model.transformer.blocks.14.attn_norm.weight": "model-00003-of-00006.safetensors",
|
61 |
+
"model.transformer.blocks.14.attn_out.weight": "model-00001-of-00006.safetensors",
|
62 |
+
"model.transformer.blocks.14.ff_norm.weight": "model-00003-of-00006.safetensors",
|
63 |
+
"model.transformer.blocks.14.ff_out.weight": "model-00002-of-00006.safetensors",
|
64 |
+
"model.transformer.blocks.14.ff_proj.weight": "model-00005-of-00006.safetensors",
|
65 |
+
"model.transformer.blocks.14.k_proj.weight": "model-00003-of-00006.safetensors",
|
66 |
+
"model.transformer.blocks.14.q_proj.weight": "model-00003-of-00006.safetensors",
|
67 |
+
"model.transformer.blocks.14.up_proj.weight": "model-00006-of-00006.safetensors",
|
68 |
+
"model.transformer.blocks.14.v_proj.weight": "model-00004-of-00006.safetensors",
|
69 |
+
"model.transformer.blocks.15.attn_norm.weight": "model-00003-of-00006.safetensors",
|
70 |
+
"model.transformer.blocks.15.attn_out.weight": "model-00001-of-00006.safetensors",
|
71 |
+
"model.transformer.blocks.15.ff_norm.weight": "model-00003-of-00006.safetensors",
|
72 |
+
"model.transformer.blocks.15.ff_out.weight": "model-00002-of-00006.safetensors",
|
73 |
+
"model.transformer.blocks.15.ff_proj.weight": "model-00005-of-00006.safetensors",
|
74 |
+
"model.transformer.blocks.15.k_proj.weight": "model-00003-of-00006.safetensors",
|
75 |
+
"model.transformer.blocks.15.q_proj.weight": "model-00003-of-00006.safetensors",
|
76 |
+
"model.transformer.blocks.15.up_proj.weight": "model-00006-of-00006.safetensors",
|
77 |
+
"model.transformer.blocks.15.v_proj.weight": "model-00004-of-00006.safetensors",
|
78 |
+
"model.transformer.blocks.16.attn_norm.weight": "model-00003-of-00006.safetensors",
|
79 |
+
"model.transformer.blocks.16.attn_out.weight": "model-00001-of-00006.safetensors",
|
80 |
+
"model.transformer.blocks.16.ff_norm.weight": "model-00003-of-00006.safetensors",
|
81 |
+
"model.transformer.blocks.16.ff_out.weight": "model-00002-of-00006.safetensors",
|
82 |
+
"model.transformer.blocks.16.ff_proj.weight": "model-00005-of-00006.safetensors",
|
83 |
+
"model.transformer.blocks.16.k_proj.weight": "model-00003-of-00006.safetensors",
|
84 |
+
"model.transformer.blocks.16.q_proj.weight": "model-00003-of-00006.safetensors",
|
85 |
+
"model.transformer.blocks.16.up_proj.weight": "model-00006-of-00006.safetensors",
|
86 |
+
"model.transformer.blocks.16.v_proj.weight": "model-00004-of-00006.safetensors",
|
87 |
+
"model.transformer.blocks.17.attn_norm.weight": "model-00003-of-00006.safetensors",
|
88 |
+
"model.transformer.blocks.17.attn_out.weight": "model-00001-of-00006.safetensors",
|
89 |
+
"model.transformer.blocks.17.ff_norm.weight": "model-00003-of-00006.safetensors",
|
90 |
+
"model.transformer.blocks.17.ff_out.weight": "model-00002-of-00006.safetensors",
|
91 |
+
"model.transformer.blocks.17.ff_proj.weight": "model-00005-of-00006.safetensors",
|
92 |
+
"model.transformer.blocks.17.k_proj.weight": "model-00003-of-00006.safetensors",
|
93 |
+
"model.transformer.blocks.17.q_proj.weight": "model-00003-of-00006.safetensors",
|
94 |
+
"model.transformer.blocks.17.up_proj.weight": "model-00006-of-00006.safetensors",
|
95 |
+
"model.transformer.blocks.17.v_proj.weight": "model-00004-of-00006.safetensors",
|
96 |
+
"model.transformer.blocks.18.attn_norm.weight": "model-00003-of-00006.safetensors",
|
97 |
+
"model.transformer.blocks.18.attn_out.weight": "model-00001-of-00006.safetensors",
|
98 |
+
"model.transformer.blocks.18.ff_norm.weight": "model-00003-of-00006.safetensors",
|
99 |
+
"model.transformer.blocks.18.ff_out.weight": "model-00002-of-00006.safetensors",
|
100 |
+
"model.transformer.blocks.18.ff_proj.weight": "model-00005-of-00006.safetensors",
|
101 |
+
"model.transformer.blocks.18.k_proj.weight": "model-00004-of-00006.safetensors",
|
102 |
+
"model.transformer.blocks.18.q_proj.weight": "model-00003-of-00006.safetensors",
|
103 |
+
"model.transformer.blocks.18.up_proj.weight": "model-00006-of-00006.safetensors",
|
104 |
+
"model.transformer.blocks.18.v_proj.weight": "model-00004-of-00006.safetensors",
|
105 |
+
"model.transformer.blocks.19.attn_norm.weight": "model-00003-of-00006.safetensors",
|
106 |
+
"model.transformer.blocks.19.attn_out.weight": "model-00001-of-00006.safetensors",
|
107 |
+
"model.transformer.blocks.19.ff_norm.weight": "model-00003-of-00006.safetensors",
|
108 |
+
"model.transformer.blocks.19.ff_out.weight": "model-00003-of-00006.safetensors",
|
109 |
+
"model.transformer.blocks.19.ff_proj.weight": "model-00005-of-00006.safetensors",
|
110 |
+
"model.transformer.blocks.19.k_proj.weight": "model-00004-of-00006.safetensors",
|
111 |
+
"model.transformer.blocks.19.q_proj.weight": "model-00003-of-00006.safetensors",
|
112 |
+
"model.transformer.blocks.19.up_proj.weight": "model-00006-of-00006.safetensors",
|
113 |
+
"model.transformer.blocks.19.v_proj.weight": "model-00004-of-00006.safetensors",
|
114 |
+
"model.transformer.blocks.2.attn_norm.weight": "model-00003-of-00006.safetensors",
|
115 |
+
"model.transformer.blocks.2.attn_out.weight": "model-00001-of-00006.safetensors",
|
116 |
+
"model.transformer.blocks.2.ff_norm.weight": "model-00003-of-00006.safetensors",
|
117 |
+
"model.transformer.blocks.2.ff_out.weight": "model-00002-of-00006.safetensors",
|
118 |
+
"model.transformer.blocks.2.ff_proj.weight": "model-00004-of-00006.safetensors",
|
119 |
+
"model.transformer.blocks.2.k_proj.weight": "model-00003-of-00006.safetensors",
|
120 |
+
"model.transformer.blocks.2.q_proj.weight": "model-00003-of-00006.safetensors",
|
121 |
+
"model.transformer.blocks.2.up_proj.weight": "model-00005-of-00006.safetensors",
|
122 |
+
"model.transformer.blocks.2.v_proj.weight": "model-00004-of-00006.safetensors",
|
123 |
+
"model.transformer.blocks.20.attn_norm.weight": "model-00003-of-00006.safetensors",
|
124 |
+
"model.transformer.blocks.20.attn_out.weight": "model-00001-of-00006.safetensors",
|
125 |
+
"model.transformer.blocks.20.ff_norm.weight": "model-00003-of-00006.safetensors",
|
126 |
+
"model.transformer.blocks.20.ff_out.weight": "model-00003-of-00006.safetensors",
|
127 |
+
"model.transformer.blocks.20.ff_proj.weight": "model-00005-of-00006.safetensors",
|
128 |
+
"model.transformer.blocks.20.k_proj.weight": "model-00004-of-00006.safetensors",
|
129 |
+
"model.transformer.blocks.20.q_proj.weight": "model-00003-of-00006.safetensors",
|
130 |
+
"model.transformer.blocks.20.up_proj.weight": "model-00006-of-00006.safetensors",
|
131 |
+
"model.transformer.blocks.20.v_proj.weight": "model-00004-of-00006.safetensors",
|
132 |
+
"model.transformer.blocks.21.attn_norm.weight": "model-00003-of-00006.safetensors",
|
133 |
+
"model.transformer.blocks.21.attn_out.weight": "model-00001-of-00006.safetensors",
|
134 |
+
"model.transformer.blocks.21.ff_norm.weight": "model-00003-of-00006.safetensors",
|
135 |
+
"model.transformer.blocks.21.ff_out.weight": "model-00003-of-00006.safetensors",
|
136 |
+
"model.transformer.blocks.21.ff_proj.weight": "model-00005-of-00006.safetensors",
|
137 |
+
"model.transformer.blocks.21.k_proj.weight": "model-00004-of-00006.safetensors",
|
138 |
+
"model.transformer.blocks.21.q_proj.weight": "model-00003-of-00006.safetensors",
|
139 |
+
"model.transformer.blocks.21.up_proj.weight": "model-00006-of-00006.safetensors",
|
140 |
+
"model.transformer.blocks.21.v_proj.weight": "model-00004-of-00006.safetensors",
|
141 |
+
"model.transformer.blocks.22.attn_norm.weight": "model-00003-of-00006.safetensors",
|
142 |
+
"model.transformer.blocks.22.attn_out.weight": "model-00001-of-00006.safetensors",
|
143 |
+
"model.transformer.blocks.22.ff_norm.weight": "model-00003-of-00006.safetensors",
|
144 |
+
"model.transformer.blocks.22.ff_out.weight": "model-00003-of-00006.safetensors",
|
145 |
+
"model.transformer.blocks.22.ff_proj.weight": "model-00005-of-00006.safetensors",
|
146 |
+
"model.transformer.blocks.22.k_proj.weight": "model-00004-of-00006.safetensors",
|
147 |
+
"model.transformer.blocks.22.q_proj.weight": "model-00003-of-00006.safetensors",
|
148 |
+
"model.transformer.blocks.22.up_proj.weight": "model-00006-of-00006.safetensors",
|
149 |
+
"model.transformer.blocks.22.v_proj.weight": "model-00004-of-00006.safetensors",
|
150 |
+
"model.transformer.blocks.23.attn_norm.weight": "model-00003-of-00006.safetensors",
|
151 |
+
"model.transformer.blocks.23.attn_out.weight": "model-00001-of-00006.safetensors",
|
152 |
+
"model.transformer.blocks.23.ff_norm.weight": "model-00003-of-00006.safetensors",
|
153 |
+
"model.transformer.blocks.23.ff_out.weight": "model-00003-of-00006.safetensors",
|
154 |
+
"model.transformer.blocks.23.ff_proj.weight": "model-00005-of-00006.safetensors",
|
155 |
+
"model.transformer.blocks.23.k_proj.weight": "model-00004-of-00006.safetensors",
|
156 |
+
"model.transformer.blocks.23.q_proj.weight": "model-00003-of-00006.safetensors",
|
157 |
+
"model.transformer.blocks.23.up_proj.weight": "model-00006-of-00006.safetensors",
|
158 |
+
"model.transformer.blocks.23.v_proj.weight": "model-00004-of-00006.safetensors",
|
159 |
+
"model.transformer.blocks.24.attn_norm.weight": "model-00003-of-00006.safetensors",
|
160 |
+
"model.transformer.blocks.24.attn_out.weight": "model-00001-of-00006.safetensors",
|
161 |
+
"model.transformer.blocks.24.ff_norm.weight": "model-00003-of-00006.safetensors",
|
162 |
+
"model.transformer.blocks.24.ff_out.weight": "model-00003-of-00006.safetensors",
|
163 |
+
"model.transformer.blocks.24.ff_proj.weight": "model-00005-of-00006.safetensors",
|
164 |
+
"model.transformer.blocks.24.k_proj.weight": "model-00004-of-00006.safetensors",
|
165 |
+
"model.transformer.blocks.24.q_proj.weight": "model-00003-of-00006.safetensors",
|
166 |
+
"model.transformer.blocks.24.up_proj.weight": "model-00006-of-00006.safetensors",
|
167 |
+
"model.transformer.blocks.24.v_proj.weight": "model-00004-of-00006.safetensors",
|
168 |
+
"model.transformer.blocks.25.attn_norm.weight": "model-00003-of-00006.safetensors",
|
169 |
+
"model.transformer.blocks.25.attn_out.weight": "model-00001-of-00006.safetensors",
|
170 |
+
"model.transformer.blocks.25.ff_norm.weight": "model-00003-of-00006.safetensors",
|
171 |
+
"model.transformer.blocks.25.ff_out.weight": "model-00003-of-00006.safetensors",
|
172 |
+
"model.transformer.blocks.25.ff_proj.weight": "model-00005-of-00006.safetensors",
|
173 |
+
"model.transformer.blocks.25.k_proj.weight": "model-00004-of-00006.safetensors",
|
174 |
+
"model.transformer.blocks.25.q_proj.weight": "model-00003-of-00006.safetensors",
|
175 |
+
"model.transformer.blocks.25.up_proj.weight": "model-00006-of-00006.safetensors",
|
176 |
+
"model.transformer.blocks.25.v_proj.weight": "model-00004-of-00006.safetensors",
|
177 |
+
"model.transformer.blocks.26.attn_norm.weight": "model-00003-of-00006.safetensors",
|
178 |
+
"model.transformer.blocks.26.attn_out.weight": "model-00001-of-00006.safetensors",
|
179 |
+
"model.transformer.blocks.26.ff_norm.weight": "model-00003-of-00006.safetensors",
|
180 |
+
"model.transformer.blocks.26.ff_out.weight": "model-00003-of-00006.safetensors",
|
181 |
+
"model.transformer.blocks.26.ff_proj.weight": "model-00005-of-00006.safetensors",
|
182 |
+
"model.transformer.blocks.26.k_proj.weight": "model-00004-of-00006.safetensors",
|
183 |
+
"model.transformer.blocks.26.q_proj.weight": "model-00003-of-00006.safetensors",
|
184 |
+
"model.transformer.blocks.26.up_proj.weight": "model-00006-of-00006.safetensors",
|
185 |
+
"model.transformer.blocks.26.v_proj.weight": "model-00004-of-00006.safetensors",
|
186 |
+
"model.transformer.blocks.27.attn_norm.weight": "model-00003-of-00006.safetensors",
|
187 |
+
"model.transformer.blocks.27.attn_out.weight": "model-00001-of-00006.safetensors",
|
188 |
+
"model.transformer.blocks.27.ff_norm.weight": "model-00003-of-00006.safetensors",
|
189 |
+
"model.transformer.blocks.27.ff_out.weight": "model-00003-of-00006.safetensors",
|
190 |
+
"model.transformer.blocks.27.ff_proj.weight": "model-00005-of-00006.safetensors",
|
191 |
+
"model.transformer.blocks.27.k_proj.weight": "model-00004-of-00006.safetensors",
|
192 |
+
"model.transformer.blocks.27.q_proj.weight": "model-00003-of-00006.safetensors",
|
193 |
+
"model.transformer.blocks.27.up_proj.weight": "model-00006-of-00006.safetensors",
|
194 |
+
"model.transformer.blocks.27.v_proj.weight": "model-00004-of-00006.safetensors",
|
195 |
+
"model.transformer.blocks.28.attn_norm.weight": "model-00003-of-00006.safetensors",
|
196 |
+
"model.transformer.blocks.28.attn_out.weight": "model-00001-of-00006.safetensors",
|
197 |
+
"model.transformer.blocks.28.ff_norm.weight": "model-00003-of-00006.safetensors",
|
198 |
+
"model.transformer.blocks.28.ff_out.weight": "model-00003-of-00006.safetensors",
|
199 |
+
"model.transformer.blocks.28.ff_proj.weight": "model-00005-of-00006.safetensors",
|
200 |
+
"model.transformer.blocks.28.k_proj.weight": "model-00004-of-00006.safetensors",
|
201 |
+
"model.transformer.blocks.28.q_proj.weight": "model-00003-of-00006.safetensors",
|
202 |
+
"model.transformer.blocks.28.up_proj.weight": "model-00006-of-00006.safetensors",
|
203 |
+
"model.transformer.blocks.28.v_proj.weight": "model-00004-of-00006.safetensors",
|
204 |
+
"model.transformer.blocks.29.attn_norm.weight": "model-00003-of-00006.safetensors",
|
205 |
+
"model.transformer.blocks.29.attn_out.weight": "model-00001-of-00006.safetensors",
|
206 |
+
"model.transformer.blocks.29.ff_norm.weight": "model-00003-of-00006.safetensors",
|
207 |
+
"model.transformer.blocks.29.ff_out.weight": "model-00003-of-00006.safetensors",
|
208 |
+
"model.transformer.blocks.29.ff_proj.weight": "model-00005-of-00006.safetensors",
|
209 |
+
"model.transformer.blocks.29.k_proj.weight": "model-00004-of-00006.safetensors",
|
210 |
+
"model.transformer.blocks.29.q_proj.weight": "model-00003-of-00006.safetensors",
|
211 |
+
"model.transformer.blocks.29.up_proj.weight": "model-00006-of-00006.safetensors",
|
212 |
+
"model.transformer.blocks.29.v_proj.weight": "model-00004-of-00006.safetensors",
|
213 |
+
"model.transformer.blocks.3.attn_norm.weight": "model-00003-of-00006.safetensors",
|
214 |
+
"model.transformer.blocks.3.attn_out.weight": "model-00001-of-00006.safetensors",
|
215 |
+
"model.transformer.blocks.3.ff_norm.weight": "model-00003-of-00006.safetensors",
|
216 |
+
"model.transformer.blocks.3.ff_out.weight": "model-00002-of-00006.safetensors",
|
217 |
+
"model.transformer.blocks.3.ff_proj.weight": "model-00004-of-00006.safetensors",
|
218 |
+
"model.transformer.blocks.3.k_proj.weight": "model-00003-of-00006.safetensors",
|
219 |
+
"model.transformer.blocks.3.q_proj.weight": "model-00003-of-00006.safetensors",
|
220 |
+
"model.transformer.blocks.3.up_proj.weight": "model-00005-of-00006.safetensors",
|
221 |
+
"model.transformer.blocks.3.v_proj.weight": "model-00004-of-00006.safetensors",
|
222 |
+
"model.transformer.blocks.30.attn_norm.weight": "model-00003-of-00006.safetensors",
|
223 |
+
"model.transformer.blocks.30.attn_out.weight": "model-00001-of-00006.safetensors",
|
224 |
+
"model.transformer.blocks.30.ff_norm.weight": "model-00003-of-00006.safetensors",
|
225 |
+
"model.transformer.blocks.30.ff_out.weight": "model-00003-of-00006.safetensors",
|
226 |
+
"model.transformer.blocks.30.ff_proj.weight": "model-00005-of-00006.safetensors",
|
227 |
+
"model.transformer.blocks.30.k_proj.weight": "model-00004-of-00006.safetensors",
|
228 |
+
"model.transformer.blocks.30.q_proj.weight": "model-00003-of-00006.safetensors",
|
229 |
+
"model.transformer.blocks.30.up_proj.weight": "model-00006-of-00006.safetensors",
|
230 |
+
"model.transformer.blocks.30.v_proj.weight": "model-00004-of-00006.safetensors",
|
231 |
+
"model.transformer.blocks.31.attn_norm.weight": "model-00003-of-00006.safetensors",
|
232 |
+
"model.transformer.blocks.31.attn_out.weight": "model-00001-of-00006.safetensors",
|
233 |
+
"model.transformer.blocks.31.ff_norm.weight": "model-00003-of-00006.safetensors",
|
234 |
+
"model.transformer.blocks.31.ff_out.weight": "model-00003-of-00006.safetensors",
|
235 |
+
"model.transformer.blocks.31.ff_proj.weight": "model-00005-of-00006.safetensors",
|
236 |
+
"model.transformer.blocks.31.k_proj.weight": "model-00004-of-00006.safetensors",
|
237 |
+
"model.transformer.blocks.31.q_proj.weight": "model-00003-of-00006.safetensors",
|
238 |
+
"model.transformer.blocks.31.up_proj.weight": "model-00006-of-00006.safetensors",
|
239 |
+
"model.transformer.blocks.31.v_proj.weight": "model-00004-of-00006.safetensors",
|
240 |
+
"model.transformer.blocks.4.attn_norm.weight": "model-00003-of-00006.safetensors",
|
241 |
+
"model.transformer.blocks.4.attn_out.weight": "model-00001-of-00006.safetensors",
|
242 |
+
"model.transformer.blocks.4.ff_norm.weight": "model-00003-of-00006.safetensors",
|
243 |
+
"model.transformer.blocks.4.ff_out.weight": "model-00002-of-00006.safetensors",
|
244 |
+
"model.transformer.blocks.4.ff_proj.weight": "model-00004-of-00006.safetensors",
|
245 |
+
"model.transformer.blocks.4.k_proj.weight": "model-00003-of-00006.safetensors",
|
246 |
+
"model.transformer.blocks.4.q_proj.weight": "model-00003-of-00006.safetensors",
|
247 |
+
"model.transformer.blocks.4.up_proj.weight": "model-00005-of-00006.safetensors",
|
248 |
+
"model.transformer.blocks.4.v_proj.weight": "model-00004-of-00006.safetensors",
|
249 |
+
"model.transformer.blocks.5.attn_norm.weight": "model-00003-of-00006.safetensors",
|
250 |
+
"model.transformer.blocks.5.attn_out.weight": "model-00001-of-00006.safetensors",
|
251 |
+
"model.transformer.blocks.5.ff_norm.weight": "model-00003-of-00006.safetensors",
|
252 |
+
"model.transformer.blocks.5.ff_out.weight": "model-00002-of-00006.safetensors",
|
253 |
+
"model.transformer.blocks.5.ff_proj.weight": "model-00004-of-00006.safetensors",
|
254 |
+
"model.transformer.blocks.5.k_proj.weight": "model-00003-of-00006.safetensors",
|
255 |
+
"model.transformer.blocks.5.q_proj.weight": "model-00003-of-00006.safetensors",
|
256 |
+
"model.transformer.blocks.5.up_proj.weight": "model-00005-of-00006.safetensors",
|
257 |
+
"model.transformer.blocks.5.v_proj.weight": "model-00004-of-00006.safetensors",
|
258 |
+
"model.transformer.blocks.6.attn_norm.weight": "model-00003-of-00006.safetensors",
|
259 |
+
"model.transformer.blocks.6.attn_out.weight": "model-00001-of-00006.safetensors",
|
260 |
+
"model.transformer.blocks.6.ff_norm.weight": "model-00003-of-00006.safetensors",
|
261 |
+
"model.transformer.blocks.6.ff_out.weight": "model-00002-of-00006.safetensors",
|
262 |
+
"model.transformer.blocks.6.ff_proj.weight": "model-00004-of-00006.safetensors",
|
263 |
+
"model.transformer.blocks.6.k_proj.weight": "model-00003-of-00006.safetensors",
|
264 |
+
"model.transformer.blocks.6.q_proj.weight": "model-00003-of-00006.safetensors",
|
265 |
+
"model.transformer.blocks.6.up_proj.weight": "model-00005-of-00006.safetensors",
|
266 |
+
"model.transformer.blocks.6.v_proj.weight": "model-00004-of-00006.safetensors",
|
267 |
+
"model.transformer.blocks.7.attn_norm.weight": "model-00003-of-00006.safetensors",
|
268 |
+
"model.transformer.blocks.7.attn_out.weight": "model-00001-of-00006.safetensors",
|
269 |
+
"model.transformer.blocks.7.ff_norm.weight": "model-00003-of-00006.safetensors",
|
270 |
+
"model.transformer.blocks.7.ff_out.weight": "model-00002-of-00006.safetensors",
|
271 |
+
"model.transformer.blocks.7.ff_proj.weight": "model-00004-of-00006.safetensors",
|
272 |
+
"model.transformer.blocks.7.k_proj.weight": "model-00003-of-00006.safetensors",
|
273 |
+
"model.transformer.blocks.7.q_proj.weight": "model-00003-of-00006.safetensors",
|
274 |
+
"model.transformer.blocks.7.up_proj.weight": "model-00005-of-00006.safetensors",
|
275 |
+
"model.transformer.blocks.7.v_proj.weight": "model-00004-of-00006.safetensors",
|
276 |
+
"model.transformer.blocks.8.attn_norm.weight": "model-00003-of-00006.safetensors",
|
277 |
+
"model.transformer.blocks.8.attn_out.weight": "model-00001-of-00006.safetensors",
|
278 |
+
"model.transformer.blocks.8.ff_norm.weight": "model-00003-of-00006.safetensors",
|
279 |
+
"model.transformer.blocks.8.ff_out.weight": "model-00002-of-00006.safetensors",
|
280 |
+
"model.transformer.blocks.8.ff_proj.weight": "model-00004-of-00006.safetensors",
|
281 |
+
"model.transformer.blocks.8.k_proj.weight": "model-00003-of-00006.safetensors",
|
282 |
+
"model.transformer.blocks.8.q_proj.weight": "model-00003-of-00006.safetensors",
|
283 |
+
"model.transformer.blocks.8.up_proj.weight": "model-00005-of-00006.safetensors",
|
284 |
+
"model.transformer.blocks.8.v_proj.weight": "model-00004-of-00006.safetensors",
|
285 |
+
"model.transformer.blocks.9.attn_norm.weight": "model-00003-of-00006.safetensors",
|
286 |
+
"model.transformer.blocks.9.attn_out.weight": "model-00001-of-00006.safetensors",
|
287 |
+
"model.transformer.blocks.9.ff_norm.weight": "model-00003-of-00006.safetensors",
|
288 |
+
"model.transformer.blocks.9.ff_out.weight": "model-00002-of-00006.safetensors",
|
289 |
+
"model.transformer.blocks.9.ff_proj.weight": "model-00004-of-00006.safetensors",
|
290 |
+
"model.transformer.blocks.9.k_proj.weight": "model-00003-of-00006.safetensors",
|
291 |
+
"model.transformer.blocks.9.q_proj.weight": "model-00003-of-00006.safetensors",
|
292 |
+
"model.transformer.blocks.9.up_proj.weight": "model-00005-of-00006.safetensors",
|
293 |
+
"model.transformer.blocks.9.v_proj.weight": "model-00004-of-00006.safetensors",
|
294 |
+
"model.transformer.ff_out.weight": "model-00002-of-00006.safetensors",
|
295 |
+
"model.transformer.ln_f.weight": "model-00001-of-00006.safetensors",
|
296 |
+
"model.transformer.wte.weight": "model-00001-of-00006.safetensors"
|
297 |
+
}
|
298 |
+
}
|
modeling_llada.py
ADDED
@@ -0,0 +1,1493 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from __future__ import annotations
|
2 |
+
|
3 |
+
import logging
|
4 |
+
import math
|
5 |
+
import sys
|
6 |
+
from abc import abstractmethod
|
7 |
+
from collections import defaultdict
|
8 |
+
from functools import partial
|
9 |
+
from typing import (
|
10 |
+
Callable,
|
11 |
+
Dict,
|
12 |
+
Iterable,
|
13 |
+
List,
|
14 |
+
NamedTuple,
|
15 |
+
Optional,
|
16 |
+
Sequence,
|
17 |
+
Set,
|
18 |
+
Tuple,
|
19 |
+
cast,
|
20 |
+
)
|
21 |
+
from dataclasses import fields
|
22 |
+
from typing import List, Optional, Tuple, Union
|
23 |
+
|
24 |
+
import torch
|
25 |
+
import torch.backends.cuda
|
26 |
+
import torch.nn as nn
|
27 |
+
import torch.nn.functional as F
|
28 |
+
from torch import einsum
|
29 |
+
from transformers import PreTrainedModel
|
30 |
+
from transformers.modeling_outputs import CausalLMOutputWithPast
|
31 |
+
from transformers.models.auto import AutoModel
|
32 |
+
from transformers.cache_utils import Cache
|
33 |
+
|
34 |
+
from .configuration_llada import (
|
35 |
+
LLaDAConfig,
|
36 |
+
StrEnum,
|
37 |
+
InitFnType,
|
38 |
+
ActivationType,
|
39 |
+
BlockType,
|
40 |
+
LayerNormType,
|
41 |
+
ModelConfig,
|
42 |
+
ActivationCheckpointingStrategy,
|
43 |
+
)
|
44 |
+
|
45 |
+
if sys.version_info.minor > 8:
|
46 |
+
from collections.abc import MutableMapping
|
47 |
+
elif sys.version_info.minor == 8:
|
48 |
+
from typing import MutableMapping
|
49 |
+
else:
|
50 |
+
raise SystemExit("This script supports Python 3.8 or higher")
|
51 |
+
|
52 |
+
__all__ = [
|
53 |
+
"LayerNormBase",
|
54 |
+
"LayerNorm",
|
55 |
+
"RMSLayerNorm",
|
56 |
+
"GemmaRMSLayerNorm",
|
57 |
+
"RotaryEmbedding",
|
58 |
+
"Activation",
|
59 |
+
"GELU",
|
60 |
+
"ReLU",
|
61 |
+
"SwiGLU",
|
62 |
+
"LLaDABlock",
|
63 |
+
"LLaDASequentialBlock",
|
64 |
+
"LLaDAModel",
|
65 |
+
"LLaDAOutput",
|
66 |
+
"LLaDAGenerateOutput",
|
67 |
+
]
|
68 |
+
|
69 |
+
|
70 |
+
log = logging.getLogger(__name__)
|
71 |
+
|
72 |
+
|
73 |
+
class ModuleType(StrEnum):
|
74 |
+
in_module = "in"
|
75 |
+
out_module = "out"
|
76 |
+
emb = "emb"
|
77 |
+
final_out = "final_out"
|
78 |
+
|
79 |
+
|
80 |
+
def init_weights(
|
81 |
+
config: ModelConfig,
|
82 |
+
module: Union[nn.Linear, nn.Embedding],
|
83 |
+
d: Optional[int] = None,
|
84 |
+
layer_id: Optional[int] = None,
|
85 |
+
std_factor: float = 1.0,
|
86 |
+
type_of_module: Optional[ModuleType] = None,
|
87 |
+
) -> None:
|
88 |
+
"""
|
89 |
+
Initialize weights of a linear or embedding module.
|
90 |
+
|
91 |
+
:param config: The model config.
|
92 |
+
:param module: The linear or embedding submodule to initialize.
|
93 |
+
:param d: The effective input dimensionality of the weights. This could be smaller than the actual dimensions
|
94 |
+
for fused layers.
|
95 |
+
:param layer_id: When set, the standard deviation for the "mitchell" method will be adjusted by
|
96 |
+
``1 / sqrt(2 * (layer_id + 1))``.
|
97 |
+
"""
|
98 |
+
d = d if d is not None else config.d_model
|
99 |
+
if config.init_fn == InitFnType.normal:
|
100 |
+
std = config.init_std * std_factor
|
101 |
+
if config.init_cutoff_factor is not None:
|
102 |
+
cutoff_value = config.init_cutoff_factor * std
|
103 |
+
nn.init.trunc_normal_(module.weight, mean=0.0, std=std, a=-cutoff_value, b=cutoff_value)
|
104 |
+
else:
|
105 |
+
nn.init.normal_(module.weight, mean=0.0, std=std)
|
106 |
+
elif config.init_fn == InitFnType.mitchell:
|
107 |
+
std = std_factor / math.sqrt(d)
|
108 |
+
if layer_id is not None:
|
109 |
+
std = std / math.sqrt(2 * (layer_id + 1))
|
110 |
+
nn.init.trunc_normal_(module.weight, mean=0.0, std=std, a=-3 * std, b=3 * std)
|
111 |
+
elif config.init_fn == InitFnType.kaiming_normal:
|
112 |
+
nn.init.kaiming_normal_(module.weight, nonlinearity="relu")
|
113 |
+
elif config.init_fn == InitFnType.fan_in:
|
114 |
+
std = std_factor / math.sqrt(d)
|
115 |
+
nn.init.normal_(module.weight, mean=0.0, std=std)
|
116 |
+
elif config.init_fn == InitFnType.full_megatron:
|
117 |
+
if type_of_module is None:
|
118 |
+
raise RuntimeError(f"When using the {InitFnType.full_megatron} init, every module must have a type.")
|
119 |
+
|
120 |
+
cutoff_factor = config.init_cutoff_factor
|
121 |
+
if cutoff_factor is None:
|
122 |
+
cutoff_factor = 3
|
123 |
+
|
124 |
+
if type_of_module == ModuleType.in_module:
|
125 |
+
# for att_proj (same as QKV), ff_proj
|
126 |
+
std = config.init_std
|
127 |
+
elif type_of_module == ModuleType.out_module:
|
128 |
+
# for attn_out, ff_out
|
129 |
+
std = config.init_std / math.sqrt(2.0 * config.n_layers)
|
130 |
+
elif type_of_module == ModuleType.emb:
|
131 |
+
# positional embeddings (wpe)
|
132 |
+
# token embeddings (wte)
|
133 |
+
std = config.init_std
|
134 |
+
elif type_of_module == ModuleType.final_out:
|
135 |
+
# final output (ff_out)
|
136 |
+
std = config.d_model**-0.5
|
137 |
+
else:
|
138 |
+
raise RuntimeError(f"Unknown module type '{type_of_module}'")
|
139 |
+
nn.init.trunc_normal_(
|
140 |
+
module.weight,
|
141 |
+
mean=0.0,
|
142 |
+
std=std,
|
143 |
+
a=-cutoff_factor * std,
|
144 |
+
b=cutoff_factor * std,
|
145 |
+
)
|
146 |
+
else:
|
147 |
+
raise NotImplementedError(config.init_fn)
|
148 |
+
|
149 |
+
if isinstance(module, nn.Linear):
|
150 |
+
if module.bias is not None:
|
151 |
+
nn.init.zeros_(module.bias)
|
152 |
+
|
153 |
+
if config.init_fn == InitFnType.normal and getattr(module, "_is_residual", False):
|
154 |
+
with torch.no_grad():
|
155 |
+
module.weight.div_(math.sqrt(2 * config.n_layers))
|
156 |
+
|
157 |
+
|
158 |
+
def ensure_finite_(x: torch.Tensor, check_neg_inf: bool = True, check_pos_inf: bool = False):
|
159 |
+
"""
|
160 |
+
Modify ``x`` in place to replace ``float("-inf")`` with the minimum value of the dtype when ``check_neg_inf``
|
161 |
+
is ``True`` and to replace ``float("inf")`` with the maximum value of the dtype when ``check_pos_inf`` is ``True``.
|
162 |
+
"""
|
163 |
+
if check_neg_inf:
|
164 |
+
x.masked_fill_(x == float("-inf"), torch.finfo(x.dtype).min)
|
165 |
+
if check_pos_inf:
|
166 |
+
x.masked_fill_(x == float("inf"), torch.finfo(x.dtype).max)
|
167 |
+
|
168 |
+
|
169 |
+
def activation_checkpoint_function(cfg: ModelConfig):
|
170 |
+
preserve_rng_state = (
|
171 |
+
(cfg.attention_dropout == 0.0) and (cfg.embedding_dropout == 0.0) and (cfg.residual_dropout == 0.0)
|
172 |
+
)
|
173 |
+
from torch.utils.checkpoint import checkpoint
|
174 |
+
|
175 |
+
return partial(
|
176 |
+
checkpoint,
|
177 |
+
preserve_rng_state=preserve_rng_state,
|
178 |
+
use_reentrant=False,
|
179 |
+
)
|
180 |
+
|
181 |
+
|
182 |
+
class BufferCache(dict, MutableMapping[str, torch.Tensor]):
|
183 |
+
"""
|
184 |
+
Cache for attention biases and other things that would normally be stored as buffers.
|
185 |
+
We avoid using buffers because we've run into various issues doing so with FSDP.
|
186 |
+
In general it appears the way FSDP handles buffers is not well-defined.
|
187 |
+
It doesn't shard them but apparently it does synchronize them across processes, which we want to avoid
|
188 |
+
since (A) it isn't necessary, and (B) we sometimes have `-inf` in these biases which might get turned into
|
189 |
+
NaNs when they're synchronized due to casting or some other issue.
|
190 |
+
"""
|
191 |
+
|
192 |
+
|
193 |
+
def _non_meta_init_device(config: ModelConfig) -> torch.device:
|
194 |
+
if config.init_device is not None and config.init_device != "meta":
|
195 |
+
return torch.device(config.init_device)
|
196 |
+
else:
|
197 |
+
return torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
198 |
+
|
199 |
+
|
200 |
+
class Dropout(nn.Dropout):
|
201 |
+
def forward(self, input: torch.Tensor) -> torch.Tensor:
|
202 |
+
if self.p == 0.0:
|
203 |
+
return input
|
204 |
+
else:
|
205 |
+
return F.dropout(input, self.p, self.training, self.inplace)
|
206 |
+
|
207 |
+
|
208 |
+
class LayerNormBase(nn.Module):
|
209 |
+
def __init__(
|
210 |
+
self,
|
211 |
+
config: ModelConfig,
|
212 |
+
*,
|
213 |
+
size: Optional[int] = None,
|
214 |
+
elementwise_affine: Optional[bool] = True,
|
215 |
+
eps: float = 1e-05,
|
216 |
+
):
|
217 |
+
super().__init__()
|
218 |
+
self.config = config
|
219 |
+
self.eps = eps
|
220 |
+
self.normalized_shape = (size or config.d_model,)
|
221 |
+
if elementwise_affine or (elementwise_affine is None and self.config.layer_norm_with_affine):
|
222 |
+
self.weight = nn.Parameter(torch.ones(self.normalized_shape, device=config.init_device))
|
223 |
+
use_bias = self.config.bias_for_layer_norm
|
224 |
+
if use_bias is None:
|
225 |
+
use_bias = self.config.include_bias
|
226 |
+
if use_bias:
|
227 |
+
self.bias = nn.Parameter(torch.zeros(self.normalized_shape, device=config.init_device))
|
228 |
+
else:
|
229 |
+
self.register_parameter("bias", None)
|
230 |
+
else:
|
231 |
+
self.register_parameter("bias", None)
|
232 |
+
self.register_parameter("weight", None)
|
233 |
+
|
234 |
+
@abstractmethod
|
235 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
236 |
+
raise NotImplementedError
|
237 |
+
|
238 |
+
@classmethod
|
239 |
+
def build(cls, config: ModelConfig, size: Optional[int] = None, **kwargs) -> LayerNormBase:
|
240 |
+
if config.layer_norm_type == LayerNormType.default:
|
241 |
+
return LayerNorm(config, size=size, low_precision=False, **kwargs)
|
242 |
+
elif config.layer_norm_type == LayerNormType.low_precision:
|
243 |
+
return LayerNorm(config, size=size, low_precision=True, **kwargs)
|
244 |
+
elif config.layer_norm_type == LayerNormType.rms:
|
245 |
+
return RMSLayerNorm(config, size=size, **kwargs)
|
246 |
+
elif config.layer_norm_type == LayerNormType.gemma_rms:
|
247 |
+
return GemmaRMSLayerNorm(config, size=size, **kwargs)
|
248 |
+
else:
|
249 |
+
raise NotImplementedError(f"Unknown LayerNorm type: '{config.layer_norm_type}'")
|
250 |
+
|
251 |
+
def _cast_if_autocast_enabled(self, tensor: torch.Tensor, dtype: Optional[torch.dtype] = None) -> torch.Tensor:
|
252 |
+
# NOTE: `is_autocast_enabled()` only checks for CUDA autocast, so we use the separate function
|
253 |
+
# `is_autocast_cpu_enabled()` for CPU autocast.
|
254 |
+
# See https://github.com/pytorch/pytorch/issues/110966.
|
255 |
+
if tensor.device.type == "cuda" and torch.is_autocast_enabled():
|
256 |
+
return tensor.to(dtype=dtype if dtype is not None else torch.get_autocast_gpu_dtype())
|
257 |
+
elif tensor.device.type == "cpu" and torch.is_autocast_cpu_enabled():
|
258 |
+
return tensor.to(dtype=dtype if dtype is not None else torch.get_autocast_cpu_dtype())
|
259 |
+
else:
|
260 |
+
return tensor
|
261 |
+
|
262 |
+
def reset_parameters(self):
|
263 |
+
if self.weight is not None:
|
264 |
+
torch.nn.init.ones_(self.weight) # type: ignore
|
265 |
+
if self.bias is not None:
|
266 |
+
torch.nn.init.zeros_(self.bias) # type: ignore
|
267 |
+
|
268 |
+
|
269 |
+
class LayerNorm(LayerNormBase):
|
270 |
+
"""
|
271 |
+
The default :class:`LayerNorm` implementation which can optionally run in low precision.
|
272 |
+
"""
|
273 |
+
|
274 |
+
def __init__(
|
275 |
+
self,
|
276 |
+
config: ModelConfig,
|
277 |
+
size: Optional[int] = None,
|
278 |
+
low_precision: bool = False,
|
279 |
+
elementwise_affine: Optional[bool] = None,
|
280 |
+
eps: float = 1e-05,
|
281 |
+
):
|
282 |
+
super().__init__(config, size=size, elementwise_affine=elementwise_affine, eps=eps)
|
283 |
+
self.low_precision = low_precision
|
284 |
+
|
285 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
286 |
+
if self.low_precision:
|
287 |
+
module_device = x.device
|
288 |
+
downcast_x = self._cast_if_autocast_enabled(x)
|
289 |
+
downcast_weight = (
|
290 |
+
self._cast_if_autocast_enabled(self.weight) if self.weight is not None else self.weight
|
291 |
+
)
|
292 |
+
downcast_bias = self._cast_if_autocast_enabled(self.bias) if self.bias is not None else self.bias
|
293 |
+
with torch.autocast(enabled=False, device_type=module_device.type):
|
294 |
+
return F.layer_norm(
|
295 |
+
downcast_x, self.normalized_shape, weight=downcast_weight, bias=downcast_bias, eps=self.eps
|
296 |
+
)
|
297 |
+
else:
|
298 |
+
return F.layer_norm(x, self.normalized_shape, weight=self.weight, bias=self.bias, eps=self.eps)
|
299 |
+
|
300 |
+
|
301 |
+
class RMSLayerNorm(LayerNormBase):
|
302 |
+
"""
|
303 |
+
RMS layer norm, a simplified :class:`LayerNorm` implementation
|
304 |
+
"""
|
305 |
+
|
306 |
+
def __init__(
|
307 |
+
self,
|
308 |
+
config: ModelConfig,
|
309 |
+
size: Optional[int] = None,
|
310 |
+
elementwise_affine: Optional[bool] = None,
|
311 |
+
eps: float = 1e-5,
|
312 |
+
):
|
313 |
+
super().__init__(config, size=size, elementwise_affine=elementwise_affine, eps=config.rms_norm_eps)
|
314 |
+
|
315 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
316 |
+
with torch.autocast(enabled=False, device_type=x.device.type):
|
317 |
+
og_dtype = x.dtype
|
318 |
+
x = x.to(torch.float32)
|
319 |
+
variance = x.pow(2).mean(-1, keepdim=True)
|
320 |
+
x = x * torch.rsqrt(variance + self.eps)
|
321 |
+
x = x.to(og_dtype)
|
322 |
+
|
323 |
+
if self.weight is not None:
|
324 |
+
if self.bias is not None:
|
325 |
+
return self.weight * x + self.bias
|
326 |
+
else:
|
327 |
+
return self.weight * x
|
328 |
+
else:
|
329 |
+
return x
|
330 |
+
|
331 |
+
|
332 |
+
class GemmaRMSLayerNorm(LayerNormBase):
|
333 |
+
"""
|
334 |
+
Gemma RMS layer norm, a simplified :class:`LayerNorm` implementation
|
335 |
+
"""
|
336 |
+
|
337 |
+
def __init__(
|
338 |
+
self,
|
339 |
+
config: ModelConfig,
|
340 |
+
size: Optional[int] = None,
|
341 |
+
elementwise_affine: Optional[bool] = None,
|
342 |
+
eps: float = 1e-5,
|
343 |
+
):
|
344 |
+
super().__init__(config, size=size, elementwise_affine=elementwise_affine, eps=config.rms_norm_eps)
|
345 |
+
|
346 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
347 |
+
with torch.autocast(enabled=False, device_type=x.device.type):
|
348 |
+
og_dtype = x.dtype
|
349 |
+
x = x.to(torch.float32)
|
350 |
+
variance = x.pow(2).mean(-1, keepdim=True)
|
351 |
+
x = x * torch.rsqrt(variance + self.eps)
|
352 |
+
x = x.to(og_dtype)
|
353 |
+
|
354 |
+
if self.weight is not None:
|
355 |
+
if self.bias is not None:
|
356 |
+
return x * (1 + self.weight) + self.bias
|
357 |
+
else:
|
358 |
+
return x * (1 + self.weight)
|
359 |
+
else:
|
360 |
+
return x
|
361 |
+
|
362 |
+
|
363 |
+
class RotaryEmbedding(nn.Module):
|
364 |
+
"""
|
365 |
+
[Rotary positional embeddings (RoPE)](https://arxiv.org/abs/2104.09864).
|
366 |
+
"""
|
367 |
+
|
368 |
+
def __init__(self, config: ModelConfig, cache: BufferCache):
|
369 |
+
super().__init__()
|
370 |
+
self.config = config
|
371 |
+
self.__cache = cache
|
372 |
+
# Warm up cache.
|
373 |
+
self.rope_theta = config.rope_theta
|
374 |
+
self.get_rotary_embedding(config.max_sequence_length, _non_meta_init_device(config))
|
375 |
+
|
376 |
+
def get_rotary_embedding(self, seq_len: int, device: torch.device) -> Tuple[torch.Tensor, torch.Tensor]:
|
377 |
+
if (
|
378 |
+
(pos_sin := self.__cache.get("rope_pos_sin")) is not None
|
379 |
+
and (pos_cos := self.__cache.get("rope_pos_cos")) is not None
|
380 |
+
and pos_sin.shape[-2] >= seq_len
|
381 |
+
and pos_cos.shape[-2] >= seq_len
|
382 |
+
):
|
383 |
+
if pos_sin.device != device:
|
384 |
+
pos_sin = pos_sin.to(device)
|
385 |
+
self.__cache["rope_pos_sin"] = pos_sin
|
386 |
+
if pos_cos.device != device:
|
387 |
+
pos_cos = pos_cos.to(device)
|
388 |
+
self.__cache["rope_pos_cos"] = pos_cos
|
389 |
+
return pos_sin[:, :, :seq_len, :], pos_cos[:, :, :seq_len, :]
|
390 |
+
|
391 |
+
with torch.autocast(device.type, enabled=False):
|
392 |
+
dim = self.config.d_model // self.config.n_heads
|
393 |
+
inv_freq = 1.0 / (self.rope_theta ** (torch.arange(0, dim, 2, device=device, dtype=torch.float) / dim))
|
394 |
+
seq = torch.arange(seq_len, device=device, dtype=torch.float)
|
395 |
+
freqs = einsum("i , j -> i j", seq, inv_freq)
|
396 |
+
positions = torch.cat((freqs, freqs), dim=-1)
|
397 |
+
pos_sin, pos_cos = positions.sin()[None, None, :, :], positions.cos()[None, None, :, :]
|
398 |
+
self.__cache["rope_pos_sin"] = pos_sin
|
399 |
+
self.__cache["rope_pos_cos"] = pos_cos
|
400 |
+
return pos_sin, pos_cos
|
401 |
+
|
402 |
+
def rotate_half(self, x: torch.Tensor) -> torch.Tensor:
|
403 |
+
B, nh, T, hs = x.size()
|
404 |
+
x = x.view(B, nh, T, 2, hs // 2)
|
405 |
+
x1, x2 = x.unbind(dim=-2)
|
406 |
+
return torch.cat((-x2, x1), dim=-1)
|
407 |
+
|
408 |
+
def apply_rotary_pos_emb(self, pos_sin: torch.Tensor, pos_cos: torch.Tensor, t: torch.Tensor) -> torch.Tensor:
|
409 |
+
return ((t * pos_cos) + (self.rotate_half(t) * pos_sin)).to(t.dtype)
|
410 |
+
|
411 |
+
def forward(self, q: torch.Tensor, k: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
|
412 |
+
if self.config.rope_full_precision:
|
413 |
+
q_, k_ = q.float(), k.float()
|
414 |
+
else:
|
415 |
+
q_, k_ = q, k
|
416 |
+
|
417 |
+
with torch.autocast(q.device.type, enabled=False):
|
418 |
+
query_len, key_len = q_.shape[-2], k_.shape[-2] # could be different if layer_past not None
|
419 |
+
pos_sin, pos_cos = self.get_rotary_embedding(key_len, q_.device)
|
420 |
+
pos_sin = pos_sin.type_as(q_)
|
421 |
+
pos_cos = pos_cos.type_as(q_)
|
422 |
+
q_ = self.apply_rotary_pos_emb(
|
423 |
+
pos_sin[:, :, key_len - query_len : key_len, :],
|
424 |
+
pos_cos[:, :, key_len - query_len : key_len, :],
|
425 |
+
q_,
|
426 |
+
)
|
427 |
+
k_ = self.apply_rotary_pos_emb(pos_sin, pos_cos, k_)
|
428 |
+
return q_.type_as(q), k_.type_as(k)
|
429 |
+
|
430 |
+
|
431 |
+
class Activation(nn.Module):
|
432 |
+
def __init__(self, config: ModelConfig):
|
433 |
+
super().__init__()
|
434 |
+
self.config = config
|
435 |
+
|
436 |
+
@abstractmethod
|
437 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
438 |
+
raise NotImplementedError
|
439 |
+
|
440 |
+
@property
|
441 |
+
@abstractmethod
|
442 |
+
def output_multiplier(self) -> float:
|
443 |
+
raise NotImplementedError
|
444 |
+
|
445 |
+
@classmethod
|
446 |
+
def build(cls, config: ModelConfig) -> Activation:
|
447 |
+
if config.activation_type == ActivationType.gelu:
|
448 |
+
return cast(Activation, GELU(approximate="none"))
|
449 |
+
elif config.activation_type == ActivationType.relu:
|
450 |
+
return cast(Activation, ReLU(inplace=False))
|
451 |
+
elif config.activation_type == ActivationType.silu:
|
452 |
+
return cast(Activation, SiLU(inplace=False))
|
453 |
+
elif config.activation_type == ActivationType.swiglu:
|
454 |
+
return SwiGLU(config)
|
455 |
+
else:
|
456 |
+
raise NotImplementedError(f"Unknown activation: '{config.activation_type}'")
|
457 |
+
|
458 |
+
|
459 |
+
class GELU(nn.GELU):
|
460 |
+
@property
|
461 |
+
def output_multiplier(self) -> float:
|
462 |
+
return 1.0
|
463 |
+
|
464 |
+
|
465 |
+
class ReLU(nn.ReLU):
|
466 |
+
@property
|
467 |
+
def output_multiplier(self) -> float:
|
468 |
+
return 1.0
|
469 |
+
|
470 |
+
class SiLU(nn.SiLU):
|
471 |
+
@property
|
472 |
+
def output_multiplier(self) -> float:
|
473 |
+
return 1.0
|
474 |
+
|
475 |
+
class SwiGLU(Activation):
|
476 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
477 |
+
x, gate = x.chunk(2, dim=-1)
|
478 |
+
return F.silu(gate) * x
|
479 |
+
|
480 |
+
@property
|
481 |
+
def output_multiplier(self) -> float:
|
482 |
+
return 0.5
|
483 |
+
|
484 |
+
|
485 |
+
def causal_attention_bias(seq_len: int, device: torch.device) -> torch.FloatTensor:
|
486 |
+
att_bias = torch.triu(
|
487 |
+
torch.ones(seq_len, seq_len, device=device, dtype=torch.float),
|
488 |
+
diagonal=1,
|
489 |
+
)
|
490 |
+
att_bias.masked_fill_(att_bias == 1, torch.finfo(att_bias.dtype).min)
|
491 |
+
return att_bias.view(1, 1, seq_len, seq_len) # type: ignore
|
492 |
+
|
493 |
+
|
494 |
+
def get_causal_attention_bias(cache: BufferCache, seq_len: int, device: torch.device) -> torch.Tensor:
|
495 |
+
if (causal_bias := cache.get("causal_attention_bias")) is not None and causal_bias.shape[-1] >= seq_len:
|
496 |
+
if causal_bias.device != device:
|
497 |
+
causal_bias = causal_bias.to(device)
|
498 |
+
cache["causal_attention_bias"] = causal_bias
|
499 |
+
return causal_bias
|
500 |
+
with torch.autocast(device.type, enabled=False):
|
501 |
+
causal_bias = causal_attention_bias(seq_len, device)
|
502 |
+
cache["causal_attention_bias"] = causal_bias
|
503 |
+
return causal_bias
|
504 |
+
|
505 |
+
|
506 |
+
def alibi_attention_bias(seq_len: int, config: ModelConfig, device: torch.device) -> torch.FloatTensor:
|
507 |
+
alibi_bias = torch.arange(1 - seq_len, 1, dtype=torch.float, device=device).view(1, 1, 1, seq_len)
|
508 |
+
|
509 |
+
# shape: (1, 1, seq_len, seq_len)
|
510 |
+
alibi_bias = alibi_bias - torch.arange(1 - seq_len, 1, dtype=torch.float, device=device).view(1, 1, seq_len, 1)
|
511 |
+
alibi_bias.abs_().mul_(-1)
|
512 |
+
|
513 |
+
# shape: (n_heads,)
|
514 |
+
m = torch.arange(1, config.n_heads + 1, dtype=torch.float, device=device)
|
515 |
+
m.mul_(config.alibi_bias_max / config.n_heads)
|
516 |
+
|
517 |
+
# shape: (1, n_heads, seq_len, seq_len)
|
518 |
+
return alibi_bias * (1.0 / (2 ** m.view(1, config.n_heads, 1, 1))) # type: ignore
|
519 |
+
|
520 |
+
|
521 |
+
class LLaDABlock(nn.Module):
|
522 |
+
"""
|
523 |
+
A base class for transformer block implementations.
|
524 |
+
"""
|
525 |
+
|
526 |
+
def __init__(self, layer_id: int, config: ModelConfig, cache: BufferCache):
|
527 |
+
super().__init__()
|
528 |
+
self.layer_id = layer_id
|
529 |
+
self.config = config
|
530 |
+
self.hidden_size = (
|
531 |
+
config.mlp_hidden_size if config.mlp_hidden_size is not None else config.mlp_ratio * config.d_model
|
532 |
+
)
|
533 |
+
self.__cache = cache
|
534 |
+
assert config.d_model % config.n_heads == 0
|
535 |
+
|
536 |
+
self._activation_checkpoint_fn = None
|
537 |
+
|
538 |
+
# Dropout.
|
539 |
+
self.dropout = Dropout(config.residual_dropout)
|
540 |
+
|
541 |
+
# Layer norms.
|
542 |
+
self.k_norm: Optional[LayerNormBase] = None
|
543 |
+
self.q_norm: Optional[LayerNormBase] = None
|
544 |
+
if config.attention_layer_norm:
|
545 |
+
self.k_norm = LayerNormBase.build(
|
546 |
+
config,
|
547 |
+
size=(config.d_model // config.n_heads) * config.effective_n_kv_heads,
|
548 |
+
elementwise_affine=config.attention_layer_norm_with_affine,
|
549 |
+
)
|
550 |
+
self.q_norm = LayerNormBase.build(config, elementwise_affine=config.attention_layer_norm_with_affine)
|
551 |
+
|
552 |
+
# Activation function.
|
553 |
+
self.act = Activation.build(config)
|
554 |
+
assert (self.act.output_multiplier * self.hidden_size) % 1 == 0
|
555 |
+
|
556 |
+
# Attention output projection.
|
557 |
+
self.attn_out = nn.Linear(
|
558 |
+
config.d_model, config.d_model, bias=config.include_bias, device=config.init_device
|
559 |
+
)
|
560 |
+
|
561 |
+
# Feed-forward output projection.
|
562 |
+
self.ff_out = nn.Linear(
|
563 |
+
int(self.act.output_multiplier * self.hidden_size),
|
564 |
+
config.d_model,
|
565 |
+
bias=config.include_bias,
|
566 |
+
device=config.init_device,
|
567 |
+
)
|
568 |
+
self.ff_out._is_residual = True # type: ignore
|
569 |
+
|
570 |
+
# Rotary embeddings.
|
571 |
+
if self.config.rope:
|
572 |
+
self.rotary_emb = RotaryEmbedding(config, self.__cache)
|
573 |
+
|
574 |
+
self.flash_attn_func = None
|
575 |
+
if config.flash_attention:
|
576 |
+
try:
|
577 |
+
from flash_attn import flash_attn_func # type: ignore
|
578 |
+
|
579 |
+
self.flash_attn_func = flash_attn_func
|
580 |
+
except ModuleNotFoundError:
|
581 |
+
pass
|
582 |
+
|
583 |
+
def reset_parameters(self):
|
584 |
+
if self.k_norm is not None:
|
585 |
+
self.k_norm.reset_parameters()
|
586 |
+
if self.q_norm is not None:
|
587 |
+
self.q_norm.reset_parameters()
|
588 |
+
init_weights(
|
589 |
+
self.config,
|
590 |
+
self.attn_out,
|
591 |
+
d=self.config.d_model,
|
592 |
+
layer_id=self.layer_id,
|
593 |
+
type_of_module=ModuleType.out_module,
|
594 |
+
)
|
595 |
+
init_weights(
|
596 |
+
self.config,
|
597 |
+
self.ff_out,
|
598 |
+
d=self.ff_out.in_features,
|
599 |
+
layer_id=self.layer_id,
|
600 |
+
type_of_module=ModuleType.out_module,
|
601 |
+
)
|
602 |
+
|
603 |
+
def set_activation_checkpointing(self, strategy: Optional[ActivationCheckpointingStrategy]):
|
604 |
+
if strategy == ActivationCheckpointingStrategy.fine_grained:
|
605 |
+
self._activation_checkpoint_fn = activation_checkpoint_function(self.config)
|
606 |
+
else:
|
607 |
+
self._activation_checkpoint_fn = None
|
608 |
+
|
609 |
+
@classmethod
|
610 |
+
def _cast_attn_bias(cls, bias: torch.Tensor, input_dtype: torch.dtype) -> torch.Tensor:
|
611 |
+
target_dtype = input_dtype
|
612 |
+
# NOTE: `is_autocast_enabled()` only checks for CUDA autocast, so we use the separate function
|
613 |
+
# `is_autocast_cpu_enabled()` for CPU autocast.
|
614 |
+
# See https://github.com/pytorch/pytorch/issues/110966.
|
615 |
+
if bias.device.type == "cuda" and torch.is_autocast_enabled():
|
616 |
+
target_dtype = torch.get_autocast_gpu_dtype()
|
617 |
+
elif bias.device.type == "cpu" and torch.is_autocast_cpu_enabled():
|
618 |
+
target_dtype = torch.get_autocast_cpu_dtype()
|
619 |
+
if bias.dtype != target_dtype:
|
620 |
+
bias = bias.to(target_dtype)
|
621 |
+
ensure_finite_(bias, check_neg_inf=True, check_pos_inf=False)
|
622 |
+
return bias
|
623 |
+
|
624 |
+
def _scaled_dot_product_attention(
|
625 |
+
self,
|
626 |
+
q: torch.Tensor,
|
627 |
+
k: torch.Tensor,
|
628 |
+
v: torch.Tensor,
|
629 |
+
attn_mask: Optional[torch.Tensor] = None,
|
630 |
+
dropout_p: float = 0.0,
|
631 |
+
is_causal: bool = False,
|
632 |
+
) -> torch.Tensor:
|
633 |
+
"""
|
634 |
+
Computes scaled dot product attention on query, key and value tensors, using an optional
|
635 |
+
attention mask if passed, and applying dropout if a probability greater than 0.0 is specified.
|
636 |
+
"""
|
637 |
+
if self.flash_attn_func is not None and attn_mask is None:
|
638 |
+
r = self.flash_attn_func(
|
639 |
+
q.transpose(1, 2), k.transpose(1, 2), v.transpose(1, 2), dropout_p=dropout_p, causal=False
|
640 |
+
)
|
641 |
+
return r.transpose(1, 2)
|
642 |
+
else:
|
643 |
+
# torch's sdpa doesn't support GQA, so we're doing this
|
644 |
+
assert k.size(1) == v.size(1)
|
645 |
+
num_kv_heads = k.size(1)
|
646 |
+
num_q_heads = q.size(1)
|
647 |
+
if num_q_heads != num_kv_heads:
|
648 |
+
assert num_q_heads % num_kv_heads == 0
|
649 |
+
k = k.repeat_interleave(num_q_heads // num_kv_heads, dim=1, output_size=num_q_heads)
|
650 |
+
v = v.repeat_interleave(num_q_heads // num_kv_heads, dim=1, output_size=num_q_heads)
|
651 |
+
|
652 |
+
# Modify: MDM set causal to False, and with no attn_mask.
|
653 |
+
return F.scaled_dot_product_attention(
|
654 |
+
q,
|
655 |
+
k,
|
656 |
+
v,
|
657 |
+
attn_mask=None,
|
658 |
+
dropout_p=dropout_p,
|
659 |
+
is_causal=False,
|
660 |
+
)
|
661 |
+
|
662 |
+
def attention(
|
663 |
+
self,
|
664 |
+
q: torch.Tensor,
|
665 |
+
k: torch.Tensor,
|
666 |
+
v: torch.Tensor,
|
667 |
+
attention_bias: Optional[torch.Tensor] = None,
|
668 |
+
layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
669 |
+
use_cache: bool = False,
|
670 |
+
) -> Tuple[torch.Tensor, Optional[Tuple[torch.Tensor, torch.Tensor]]]:
|
671 |
+
B, T, C = q.size() # batch size, sequence length, d_model
|
672 |
+
dtype = k.dtype
|
673 |
+
|
674 |
+
# Optionally apply layer norm to keys and queries.
|
675 |
+
if self.q_norm is not None and self.k_norm is not None:
|
676 |
+
q = self.q_norm(q).to(dtype=dtype)
|
677 |
+
k = self.k_norm(k).to(dtype=dtype)
|
678 |
+
|
679 |
+
# Move head forward to be next to the batch dim.
|
680 |
+
# shape: (B, nh, T, hs)
|
681 |
+
q = q.view(B, T, self.config.n_heads, C // self.config.n_heads).transpose(1, 2)
|
682 |
+
# shape: (B, n_kv_h, T, hs)
|
683 |
+
k = k.view(B, T, self.config.effective_n_kv_heads, C // self.config.n_heads).transpose(1, 2)
|
684 |
+
# shape: (B, n_kv_h, T, hs)
|
685 |
+
v = v.view(B, T, self.config.effective_n_kv_heads, C // self.config.n_heads).transpose(1, 2)
|
686 |
+
|
687 |
+
if layer_past is not None:
|
688 |
+
past_key, past_value = layer_past
|
689 |
+
k = torch.cat((past_key, k), dim=-2)
|
690 |
+
v = torch.cat((past_value, v), dim=-2)
|
691 |
+
|
692 |
+
present = (k, v) if use_cache else None
|
693 |
+
query_len, key_len = q.shape[-2], k.shape[-2] # could be different if layer_past not None
|
694 |
+
|
695 |
+
if self.config.rope:
|
696 |
+
# Apply rotary embeddings.
|
697 |
+
q, k = self.rotary_emb(q, k)
|
698 |
+
|
699 |
+
if attention_bias is not None:
|
700 |
+
# Resize and cast attention bias.
|
701 |
+
# The current dtype of the attention bias might not match the dtype that the SDP attn function will
|
702 |
+
# run in if AMP is enabled, and this can be a problem if some tokens are masked out due to padding
|
703 |
+
# as down-casting the attention bias to the autocast precision will result in -infs, which will
|
704 |
+
# cause the SDP attn function to produce NaNs.
|
705 |
+
attention_bias = self._cast_attn_bias(
|
706 |
+
attention_bias[:, :, key_len - query_len : key_len, :key_len], dtype
|
707 |
+
)
|
708 |
+
|
709 |
+
# Get the attention scores.
|
710 |
+
# shape: (B, nh, T, hs)
|
711 |
+
att = self._scaled_dot_product_attention(
|
712 |
+
q,
|
713 |
+
k,
|
714 |
+
v,
|
715 |
+
attn_mask=None,
|
716 |
+
dropout_p=0.0 if not self.training else self.config.attention_dropout,
|
717 |
+
is_causal=False,
|
718 |
+
)
|
719 |
+
|
720 |
+
# Re-assemble all head outputs side-by-side.
|
721 |
+
att = att.transpose(1, 2).contiguous().view(B, T, C)
|
722 |
+
|
723 |
+
# Apply output projection.
|
724 |
+
return self.attn_out(att), present
|
725 |
+
|
726 |
+
@abstractmethod
|
727 |
+
def forward(
|
728 |
+
self,
|
729 |
+
x: torch.Tensor,
|
730 |
+
attention_bias: Optional[torch.FloatTensor] = None,
|
731 |
+
layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
732 |
+
use_cache: bool = False,
|
733 |
+
) -> Tuple[torch.Tensor, Optional[Tuple[torch.Tensor, torch.Tensor]]]:
|
734 |
+
raise NotImplementedError
|
735 |
+
|
736 |
+
@classmethod
|
737 |
+
def build(cls, layer_id: int, config: ModelConfig, cache: BufferCache) -> LLaDABlock:
|
738 |
+
if config.block_type == BlockType.sequential:
|
739 |
+
return LLaDASequentialBlock(layer_id, config, cache)
|
740 |
+
elif config.block_type == BlockType.llama:
|
741 |
+
return LLaDALlamaBlock(layer_id, config, cache)
|
742 |
+
else:
|
743 |
+
raise NotImplementedError(f"Unknown block type: '{config.block_type}'")
|
744 |
+
|
745 |
+
|
746 |
+
class LLaDASequentialBlock(LLaDABlock):
|
747 |
+
"""
|
748 |
+
This is a typical transformer block where the output is computed as ``MLP(LN(x + Attention(LN(x))))``
|
749 |
+
(plus another skip connection).
|
750 |
+
"""
|
751 |
+
|
752 |
+
def __init__(self, layer_id: int, config: ModelConfig, cache: BufferCache):
|
753 |
+
super().__init__(layer_id, config, cache)
|
754 |
+
# Layer norms.
|
755 |
+
self.attn_norm = LayerNorm.build(config)
|
756 |
+
self.ff_norm = LayerNorm.build(config)
|
757 |
+
# Attention input projection. Projects x -> (q, k, v)
|
758 |
+
head_dim = config.d_model // config.n_heads
|
759 |
+
self.fused_dims = (
|
760 |
+
config.d_model,
|
761 |
+
config.effective_n_kv_heads * head_dim,
|
762 |
+
config.effective_n_kv_heads * head_dim,
|
763 |
+
)
|
764 |
+
self.att_proj = nn.Linear(
|
765 |
+
config.d_model, sum(self.fused_dims), bias=config.include_bias | config.include_qkv_bias, device=config.init_device
|
766 |
+
)
|
767 |
+
# Feed-forward input projection.
|
768 |
+
self.ff_proj = nn.Linear(
|
769 |
+
config.d_model, self.hidden_size, bias=config.include_bias, device=config.init_device
|
770 |
+
)
|
771 |
+
|
772 |
+
def reset_parameters(self):
|
773 |
+
super().reset_parameters()
|
774 |
+
self.attn_norm.reset_parameters()
|
775 |
+
self.ff_norm.reset_parameters()
|
776 |
+
# NOTE: the standard deviation for these weights does not depend on the layer.
|
777 |
+
init_weights(
|
778 |
+
self.config, self.att_proj, d=self.config.d_model, layer_id=None, type_of_module=ModuleType.in_module
|
779 |
+
)
|
780 |
+
init_weights(
|
781 |
+
self.config, self.ff_proj, d=self.config.d_model, layer_id=None, type_of_module=ModuleType.in_module
|
782 |
+
)
|
783 |
+
|
784 |
+
def forward(
|
785 |
+
self,
|
786 |
+
x: torch.Tensor,
|
787 |
+
attention_bias: Optional[torch.Tensor] = None,
|
788 |
+
layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
789 |
+
use_cache: bool = False,
|
790 |
+
) -> Tuple[torch.Tensor, Optional[Tuple[torch.Tensor, torch.Tensor]]]:
|
791 |
+
# Get query, key, value projections.
|
792 |
+
# shape:
|
793 |
+
# - for regular attn q, k, v: (batch_size, seq_len, d_model)
|
794 |
+
# - for multi-query attn q: (batch_size, seq_len, d_model)
|
795 |
+
# k, v: (batch_size, seq_len, d_model // n_heads)
|
796 |
+
# - for group query attn q: (batch_size, seq_len, d_model)
|
797 |
+
# k, v: (batch_size, seq_len, d_model // n_kv_heads)
|
798 |
+
if self._activation_checkpoint_fn is not None:
|
799 |
+
q, k, v = self.att_proj(self._activation_checkpoint_fn(self.attn_norm, x)).split(
|
800 |
+
self.fused_dims, dim=-1
|
801 |
+
)
|
802 |
+
else:
|
803 |
+
q, k, v = self.att_proj(self.attn_norm(x)).split(self.fused_dims, dim=-1)
|
804 |
+
|
805 |
+
# Get attention scores.
|
806 |
+
if self._activation_checkpoint_fn is not None:
|
807 |
+
att, cache = self._activation_checkpoint_fn( # type: ignore
|
808 |
+
self.attention, q, k, v, attention_bias, layer_past=layer_past, use_cache=use_cache
|
809 |
+
)
|
810 |
+
else:
|
811 |
+
att, cache = self.attention(q, k, v, attention_bias, layer_past=layer_past, use_cache=use_cache)
|
812 |
+
|
813 |
+
# Add attention scores.
|
814 |
+
# shape: (B, T, C)
|
815 |
+
x = x + self.dropout(att)
|
816 |
+
|
817 |
+
# Add feed-forward projection.
|
818 |
+
# shape: (batch_size, seq_len, d_model)
|
819 |
+
og_x = x
|
820 |
+
if self._activation_checkpoint_fn is not None:
|
821 |
+
x = self._activation_checkpoint_fn(self.ff_norm, x) # type: ignore
|
822 |
+
else:
|
823 |
+
x = self.ff_norm(x)
|
824 |
+
x = self.ff_proj(x)
|
825 |
+
if self._activation_checkpoint_fn is not None:
|
826 |
+
x = self._activation_checkpoint_fn(self.act, x) # type: ignore
|
827 |
+
else:
|
828 |
+
x = self.act(x)
|
829 |
+
x = self.ff_out(x)
|
830 |
+
x = self.dropout(x)
|
831 |
+
x = og_x + x
|
832 |
+
|
833 |
+
return x, cache
|
834 |
+
|
835 |
+
|
836 |
+
class LLaDALlamaBlock(LLaDABlock):
|
837 |
+
"""
|
838 |
+
This is a transformer block where the output is computed as ``MLP(LN(x + Attention(LN(x))))``
|
839 |
+
(plus another skip connection). This block is similar to `LLaDASequentialBlock`
|
840 |
+
but some operations have slightly different implementations to imitate the
|
841 |
+
behavior of Llama.
|
842 |
+
"""
|
843 |
+
|
844 |
+
def __init__(self, layer_id: int, config: ModelConfig, cache: BufferCache):
|
845 |
+
super().__init__(layer_id, config, cache)
|
846 |
+
# Layer norms.
|
847 |
+
self.attn_norm = LayerNorm.build(config)
|
848 |
+
self.ff_norm = LayerNorm.build(config)
|
849 |
+
self.__cache = cache
|
850 |
+
|
851 |
+
# Attention input projection. Projects x -> (q, k, v)
|
852 |
+
head_dim = config.d_model // config.n_heads
|
853 |
+
q_proj_out_dim = config.d_model
|
854 |
+
k_proj_out_dim = config.effective_n_kv_heads * head_dim
|
855 |
+
v_proj_out_dim = config.effective_n_kv_heads * head_dim
|
856 |
+
self.q_proj = nn.Linear(
|
857 |
+
config.d_model, q_proj_out_dim, bias=config.include_bias | config.include_qkv_bias, device=config.init_device
|
858 |
+
)
|
859 |
+
self.k_proj = nn.Linear(
|
860 |
+
config.d_model, k_proj_out_dim, bias=config.include_bias | config.include_qkv_bias, device=config.init_device
|
861 |
+
)
|
862 |
+
self.v_proj = nn.Linear(
|
863 |
+
config.d_model, v_proj_out_dim, bias=config.include_bias | config.include_qkv_bias, device=config.init_device
|
864 |
+
)
|
865 |
+
|
866 |
+
# Feed-forward input projection.
|
867 |
+
self.ff_proj = nn.Linear(
|
868 |
+
config.d_model, self.hidden_size, bias=config.include_bias, device=config.init_device
|
869 |
+
)
|
870 |
+
# new add
|
871 |
+
self.up_proj = nn.Linear(
|
872 |
+
config.d_model, self.hidden_size, bias=config.include_bias, device=config.init_device
|
873 |
+
)
|
874 |
+
|
875 |
+
def reset_parameters(self):
|
876 |
+
super().reset_parameters()
|
877 |
+
self.attn_norm.reset_parameters()
|
878 |
+
self.ff_norm.reset_parameters()
|
879 |
+
# NOTE: the standard deviation for these weights does not depend on the layer.
|
880 |
+
init_weights(self.config, self.q_proj, d=self.config.d_model, layer_id=None)
|
881 |
+
init_weights(self.config, self.k_proj, d=self.config.d_model, layer_id=None)
|
882 |
+
init_weights(self.config, self.v_proj, d=self.config.d_model, layer_id=None)
|
883 |
+
init_weights(self.config, self.ff_proj, d=self.config.d_model, layer_id=None)
|
884 |
+
init_weights(self.config, self.up_proj, d=self.config.d_model, layer_id=None) # new add
|
885 |
+
|
886 |
+
def forward(
|
887 |
+
self,
|
888 |
+
x: torch.Tensor,
|
889 |
+
attention_bias: Optional[torch.Tensor] = None,
|
890 |
+
layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
891 |
+
use_cache: bool = False,
|
892 |
+
) -> Tuple[torch.Tensor, Optional[Tuple[torch.Tensor, torch.Tensor]]]:
|
893 |
+
# Get query, key, value projections.
|
894 |
+
# shape:
|
895 |
+
# - for regular attn q, k, v: (batch_size, seq_len, d_model)
|
896 |
+
# - for multi-query attn q: (batch_size, seq_len, d_model)
|
897 |
+
# k, v: (batch_size, seq_len, d_model // n_heads)
|
898 |
+
# - for group query attn q: (batch_size, seq_len, d_model)
|
899 |
+
# k, v: (batch_size, seq_len, d_model // n_kv_heads)
|
900 |
+
x_normed = self.attn_norm(x)
|
901 |
+
q = self.q_proj(x_normed)
|
902 |
+
k = self.k_proj(x_normed)
|
903 |
+
v = self.v_proj(x_normed)
|
904 |
+
|
905 |
+
# Get attention scores.
|
906 |
+
if self._activation_checkpoint_fn is not None:
|
907 |
+
att, cache = self._activation_checkpoint_fn( # type: ignore
|
908 |
+
self.attention, q, k, v, attention_bias, layer_past=layer_past, use_cache=use_cache
|
909 |
+
)
|
910 |
+
else:
|
911 |
+
att, cache = self.attention(q, k, v, attention_bias, layer_past=layer_past, use_cache=use_cache)
|
912 |
+
|
913 |
+
# Add attention scores.
|
914 |
+
# shape: (B, T, C)
|
915 |
+
x = x + self.dropout(att)
|
916 |
+
|
917 |
+
# Add feed-forward projection.
|
918 |
+
# shape: (batch_size, seq_len, d_model)
|
919 |
+
og_x = x
|
920 |
+
if self._activation_checkpoint_fn is not None:
|
921 |
+
x = self._activation_checkpoint_fn(self.ff_norm, x) # type: ignore
|
922 |
+
else:
|
923 |
+
x = self.ff_norm(x)
|
924 |
+
x, x_up = self.ff_proj(x), self.up_proj(x) # new add
|
925 |
+
if self._activation_checkpoint_fn is not None:
|
926 |
+
x = self._activation_checkpoint_fn(self.act, x) # type: ignore
|
927 |
+
else:
|
928 |
+
x = self.act(x)
|
929 |
+
x = x * x_up # new add
|
930 |
+
x = self.ff_out(x)
|
931 |
+
x = self.dropout(x)
|
932 |
+
x = og_x + x
|
933 |
+
|
934 |
+
return x, cache
|
935 |
+
|
936 |
+
|
937 |
+
class LLaDAOutput(NamedTuple):
|
938 |
+
logits: torch.FloatTensor
|
939 |
+
"""
|
940 |
+
A tensor of shape `(batch_size, seq_len, vocab_size)` representing the log probabilities
|
941 |
+
for the next token *before* normalization via (log) softmax.
|
942 |
+
"""
|
943 |
+
|
944 |
+
attn_key_values: Optional[List[Tuple[torch.Tensor, torch.Tensor]]]
|
945 |
+
"""
|
946 |
+
Attention keys and values from each block.
|
947 |
+
"""
|
948 |
+
|
949 |
+
hidden_states: Optional[Tuple[torch.Tensor]]
|
950 |
+
"""
|
951 |
+
Hidden states from each block.
|
952 |
+
"""
|
953 |
+
|
954 |
+
|
955 |
+
class LLaDAGenerateOutput(NamedTuple):
|
956 |
+
token_ids: torch.LongTensor
|
957 |
+
"""
|
958 |
+
The generated token IDs, a tensor of shape `(batch_size, beam_size, max_steps)`.
|
959 |
+
These do *not* include the original input IDs.
|
960 |
+
"""
|
961 |
+
|
962 |
+
scores: torch.FloatTensor
|
963 |
+
"""
|
964 |
+
The scores of the generated sequences, a tensor of shape `(batch_size, beam_size)`.
|
965 |
+
"""
|
966 |
+
|
967 |
+
|
968 |
+
class LLaDABlockGroup(nn.ModuleList):
|
969 |
+
def __init__(self, config: ModelConfig, layer_offset: int, modules: Optional[Iterable[nn.Module]] = None):
|
970 |
+
super().__init__(modules)
|
971 |
+
self.config = config
|
972 |
+
self.layer_offset = layer_offset
|
973 |
+
self.activation_checkpointing_strategy: Optional[ActivationCheckpointingStrategy] = None
|
974 |
+
self._activation_checkpoint_fn = activation_checkpoint_function(self.config)
|
975 |
+
|
976 |
+
def forward(
|
977 |
+
self,
|
978 |
+
x: torch.Tensor,
|
979 |
+
attention_bias: Optional[torch.FloatTensor] = None,
|
980 |
+
layers_past: Optional[List[Tuple[torch.Tensor, torch.Tensor]]] = None,
|
981 |
+
use_cache: bool = False,
|
982 |
+
) -> Tuple[torch.Tensor, Optional[List[Tuple[torch.Tensor, torch.Tensor]]]]:
|
983 |
+
attn_key_values: Optional[List[Tuple[torch.Tensor, torch.Tensor]]] = [] if use_cache else None
|
984 |
+
for block_idx, block in enumerate(self):
|
985 |
+
layer_past = None if layers_past is None else layers_past[block_idx]
|
986 |
+
block_idx += self.layer_offset
|
987 |
+
if (
|
988 |
+
(self.activation_checkpointing_strategy == ActivationCheckpointingStrategy.whole_layer)
|
989 |
+
or (
|
990 |
+
self.activation_checkpointing_strategy == ActivationCheckpointingStrategy.one_in_two
|
991 |
+
and block_idx % 2 == 0
|
992 |
+
)
|
993 |
+
or (
|
994 |
+
self.activation_checkpointing_strategy == ActivationCheckpointingStrategy.one_in_three
|
995 |
+
and block_idx % 3 == 0
|
996 |
+
)
|
997 |
+
or (
|
998 |
+
self.activation_checkpointing_strategy == ActivationCheckpointingStrategy.one_in_four
|
999 |
+
and block_idx % 4 == 0
|
1000 |
+
)
|
1001 |
+
):
|
1002 |
+
# shape: (batch_size, seq_len, d_model)
|
1003 |
+
x, cache = self._activation_checkpoint_fn( # type: ignore
|
1004 |
+
block, x, attention_bias=attention_bias, layer_past=layer_past, use_cache=use_cache
|
1005 |
+
)
|
1006 |
+
else:
|
1007 |
+
# shape: (batch_size, seq_len, d_model)
|
1008 |
+
x, cache = block(x, attention_bias=attention_bias, layer_past=layer_past, use_cache=use_cache)
|
1009 |
+
if attn_key_values is not None:
|
1010 |
+
assert cache is not None
|
1011 |
+
attn_key_values.append(cache)
|
1012 |
+
return x, attn_key_values
|
1013 |
+
|
1014 |
+
def reset_parameters(self):
|
1015 |
+
for block in self:
|
1016 |
+
block.reset_parameters()
|
1017 |
+
|
1018 |
+
def set_activation_checkpointing(self, strategy: Optional[ActivationCheckpointingStrategy]):
|
1019 |
+
self.activation_checkpointing_strategy = strategy
|
1020 |
+
for block in self:
|
1021 |
+
block.set_activation_checkpointing(strategy)
|
1022 |
+
|
1023 |
+
|
1024 |
+
class LLaDAModel(nn.Module):
|
1025 |
+
def __init__(self, config: ModelConfig, init_params: bool = True):
|
1026 |
+
super().__init__()
|
1027 |
+
self.config = config
|
1028 |
+
self.__cache = BufferCache()
|
1029 |
+
|
1030 |
+
# Validate config.
|
1031 |
+
if self.config.alibi and self.config.flash_attention:
|
1032 |
+
raise Exception("ALiBi is currently not supported with FlashAttention")
|
1033 |
+
|
1034 |
+
if self.config.alibi and self.config.rope:
|
1035 |
+
raise Exception("ALiBi and RoPE are mutually exclusive")
|
1036 |
+
|
1037 |
+
if self.config.embedding_size is not None and self.config.embedding_size != self.config.vocab_size:
|
1038 |
+
if self.config.embedding_size < self.config.vocab_size:
|
1039 |
+
raise Exception("embedding size should be at least as big as vocab size")
|
1040 |
+
elif self.config.embedding_size % 128 != 0:
|
1041 |
+
import warnings
|
1042 |
+
|
1043 |
+
warnings.warn(
|
1044 |
+
"Embedding size is not a multiple of 128! This could hurt throughput performance.", UserWarning
|
1045 |
+
)
|
1046 |
+
|
1047 |
+
self.activation_checkpointing_strategy: Optional[ActivationCheckpointingStrategy] = None
|
1048 |
+
self._activation_checkpoint_fn: Callable = activation_checkpoint_function(self.config)
|
1049 |
+
|
1050 |
+
if not (
|
1051 |
+
0 < self.config.block_group_size <= self.config.n_layers
|
1052 |
+
and self.config.n_layers % self.config.block_group_size == 0
|
1053 |
+
):
|
1054 |
+
raise Exception("n layers must be divisible by block group size")
|
1055 |
+
|
1056 |
+
torch.backends.cuda.enable_flash_sdp(True)
|
1057 |
+
torch.backends.cuda.enable_mem_efficient_sdp(False) # this is super slow so make sure torch won't use it
|
1058 |
+
|
1059 |
+
self.transformer = nn.ModuleDict(
|
1060 |
+
dict(
|
1061 |
+
wte=nn.Embedding(
|
1062 |
+
config.embedding_size or config.vocab_size, config.d_model, device=config.init_device
|
1063 |
+
),
|
1064 |
+
emb_drop=Dropout(config.embedding_dropout),
|
1065 |
+
ln_f=LayerNorm.build(config),
|
1066 |
+
)
|
1067 |
+
)
|
1068 |
+
|
1069 |
+
blocks = [LLaDABlock.build(i, config, self.__cache) for i in range(config.n_layers)]
|
1070 |
+
if self.config.block_group_size > 1:
|
1071 |
+
block_groups = [
|
1072 |
+
LLaDABlockGroup(config, i, blocks[i : i + config.block_group_size])
|
1073 |
+
for i in range(0, config.n_layers, config.block_group_size)
|
1074 |
+
]
|
1075 |
+
self.transformer.update({"block_groups": nn.ModuleList(block_groups)})
|
1076 |
+
else:
|
1077 |
+
self.transformer.update({"blocks": nn.ModuleList(blocks)})
|
1078 |
+
|
1079 |
+
if not (self.config.alibi or self.config.rope):
|
1080 |
+
self.transformer.update(
|
1081 |
+
{"wpe": nn.Embedding(config.max_sequence_length, config.d_model, device=config.init_device)}
|
1082 |
+
)
|
1083 |
+
if not config.weight_tying:
|
1084 |
+
self.transformer.update(
|
1085 |
+
{
|
1086 |
+
"ff_out": nn.Linear(
|
1087 |
+
config.d_model,
|
1088 |
+
config.embedding_size or config.vocab_size,
|
1089 |
+
bias=config.include_bias,
|
1090 |
+
device=config.init_device,
|
1091 |
+
)
|
1092 |
+
}
|
1093 |
+
)
|
1094 |
+
# When `init_device="meta"` FSDP will call `reset_parameters()` to initialize weights.
|
1095 |
+
if init_params and self.config.init_device != "meta":
|
1096 |
+
self.reset_parameters()
|
1097 |
+
self.__num_fwd_flops: Optional[int] = None
|
1098 |
+
|
1099 |
+
# Warm up cache.
|
1100 |
+
if self.config.alibi:
|
1101 |
+
get_causal_attention_bias(self.__cache, config.max_sequence_length, _non_meta_init_device(config))
|
1102 |
+
self.get_alibi_attention_bias(config.max_sequence_length, _non_meta_init_device(config))
|
1103 |
+
|
1104 |
+
def set_activation_checkpointing(self, strategy: Optional[ActivationCheckpointingStrategy]):
|
1105 |
+
self.activation_checkpointing_strategy = strategy
|
1106 |
+
if self.config.block_group_size != 1:
|
1107 |
+
for block_group in self.transformer.block_groups:
|
1108 |
+
block_group.set_activation_checkpointing(strategy)
|
1109 |
+
else:
|
1110 |
+
for block in self.transformer.blocks:
|
1111 |
+
block.set_activation_checkpointing(strategy)
|
1112 |
+
|
1113 |
+
@property
|
1114 |
+
def device(self) -> torch.device:
|
1115 |
+
device: torch.device = self.transformer.wte.weight.device # type: ignore
|
1116 |
+
if device.type == "meta":
|
1117 |
+
return _non_meta_init_device(self.config)
|
1118 |
+
else:
|
1119 |
+
return device
|
1120 |
+
|
1121 |
+
def reset_parameters(self):
|
1122 |
+
log.info("Initializing model parameters...")
|
1123 |
+
# Top-level embeddings / linear layers.
|
1124 |
+
init_weights(
|
1125 |
+
self.config,
|
1126 |
+
self.transformer.wte, # type: ignore
|
1127 |
+
std_factor=(0.5 * math.sqrt(self.config.d_model)) if self.config.scale_logits else 1.0,
|
1128 |
+
type_of_module=ModuleType.emb,
|
1129 |
+
)
|
1130 |
+
if hasattr(self.transformer, "wpe"):
|
1131 |
+
init_weights(self.config, self.transformer.wpe, type_of_module=ModuleType.emb) # type: ignore
|
1132 |
+
|
1133 |
+
# Top-level layer norm.
|
1134 |
+
self.transformer.ln_f.reset_parameters() # type: ignore
|
1135 |
+
|
1136 |
+
# Output weights.
|
1137 |
+
if hasattr(self.transformer, "ff_out"):
|
1138 |
+
init_weights(self.config, self.transformer.ff_out, type_of_module=ModuleType.final_out) # type: ignore
|
1139 |
+
|
1140 |
+
# Let the blocks handle themselves.
|
1141 |
+
if self.config.block_group_size == 1:
|
1142 |
+
for block in self.transformer.blocks:
|
1143 |
+
block.reset_parameters()
|
1144 |
+
else:
|
1145 |
+
for block_group in self.transformer.block_groups:
|
1146 |
+
block_group.reset_parameters()
|
1147 |
+
|
1148 |
+
def get_alibi_attention_bias(self, seq_len: int, device: torch.device) -> torch.Tensor:
|
1149 |
+
if (alibi_bias := self.__cache.get("alibi_attention_bias")) is not None and alibi_bias.shape[
|
1150 |
+
-1
|
1151 |
+
] >= seq_len:
|
1152 |
+
if alibi_bias.device != device:
|
1153 |
+
alibi_bias = alibi_bias.to(device)
|
1154 |
+
self.__cache["alibi_attention_bias"] = alibi_bias
|
1155 |
+
return alibi_bias
|
1156 |
+
with torch.autocast(device.type, enabled=False):
|
1157 |
+
alibi_bias = alibi_attention_bias(seq_len, self.config, device)
|
1158 |
+
self.__cache["alibi_attention_bias"] = alibi_bias
|
1159 |
+
return alibi_bias
|
1160 |
+
|
1161 |
+
def forward(
|
1162 |
+
self,
|
1163 |
+
input_ids: torch.LongTensor,
|
1164 |
+
input_embeddings: Optional[torch.FloatTensor] = None,
|
1165 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1166 |
+
attention_bias: Optional[torch.Tensor] = None,
|
1167 |
+
past_key_values: Optional[Sequence[Tuple[torch.Tensor, torch.Tensor]]] = None,
|
1168 |
+
use_cache: bool = False,
|
1169 |
+
last_logits_only: bool = False,
|
1170 |
+
output_hidden_states: Optional[bool] = None,
|
1171 |
+
) -> LLaDAOutput:
|
1172 |
+
"""
|
1173 |
+
:param input_ids: A tensor of shape `(batch_size, seq_len)`.
|
1174 |
+
:param input_embeddings: A tensor of shape `(batch_size, seq_len, d_model)` with input
|
1175 |
+
embeddings. When provided, it is treated as the output of the input embedding layer.
|
1176 |
+
:param attention_mask: A tensor of shape `(batch_size, seq_len)` that indicates
|
1177 |
+
which input IDs are masked. A `1` value in the mask means that
|
1178 |
+
the corresponding input ID should *not* be ignored. A `0` means
|
1179 |
+
that the corresponding input ID is masked.
|
1180 |
+
|
1181 |
+
This has the same meaning as the `attention_mask` in HuggingFace's `transformers`
|
1182 |
+
library.
|
1183 |
+
:param attention_bias: A tensor of shape `(batch_size, 1, seq_len, seq_len)`,
|
1184 |
+
`(1, 1, seq_len, seq_len)`, or `(seq_len, seq_len)`. This is used
|
1185 |
+
to introduce causal or other biases.
|
1186 |
+
|
1187 |
+
If the tensor is a bool or byte tensor, a `True` or `1` at `attention_bias[:, :, i, j]`
|
1188 |
+
indicates that the i-th element in the sequence is allowed to attend to the j-th
|
1189 |
+
element in the sequence.
|
1190 |
+
|
1191 |
+
If the tensor is a float tensor, it will just be added to the attention
|
1192 |
+
scores before the softmax.
|
1193 |
+
|
1194 |
+
The default is causal, which corresponds to a lower-diagonal byte matrix of ones.
|
1195 |
+
:param past_key_values: Pre-computed keys and values for each attention block.
|
1196 |
+
Can be used to speed up sequential decoding. The `input_ids` which have
|
1197 |
+
their past given to this model should not be passed as `input_ids` as they have already been computed.
|
1198 |
+
:param use_cache: If `True`, return key and value tensors for each block.
|
1199 |
+
:param last_logits_only: If `True`, only compute the logits for the last token of each sequence.
|
1200 |
+
This can speed up decoding when you only care about the next token.
|
1201 |
+
"""
|
1202 |
+
# Add Basic MDM Model config check
|
1203 |
+
assert not self.config.alibi, "Alibi length extrapolation is not supported for MDM."
|
1204 |
+
assert self.config.rope, "Rope must be used in Llama-Encoder for MDM."
|
1205 |
+
assert (past_key_values is None and not use_cache), "The kvcache is not suppotred for MDM."
|
1206 |
+
|
1207 |
+
output_hidden_states = output_hidden_states if output_hidden_states is not None else False
|
1208 |
+
|
1209 |
+
if past_key_values:
|
1210 |
+
assert len(past_key_values) == self.config.n_layers
|
1211 |
+
|
1212 |
+
batch_size, seq_len = input_ids.size() if input_embeddings is None else input_embeddings.size()[:2]
|
1213 |
+
if past_key_values is None:
|
1214 |
+
past_length = 0
|
1215 |
+
else:
|
1216 |
+
past_length = past_key_values[0][0].size(-2)
|
1217 |
+
|
1218 |
+
# Get embeddings of input.
|
1219 |
+
# shape: (batch_size, seq_len, d_model)
|
1220 |
+
x = self.transformer.wte(input_ids) if input_embeddings is None else input_embeddings # type: ignore
|
1221 |
+
|
1222 |
+
if self.config.input_emb_norm:
|
1223 |
+
x = x * (self.config.d_model**0.5)
|
1224 |
+
|
1225 |
+
if not (self.config.alibi or self.config.rope):
|
1226 |
+
# Get positional embeddings.
|
1227 |
+
# shape: (1, seq_len)
|
1228 |
+
pos = torch.arange(past_length, past_length + seq_len, dtype=torch.long, device=x.device).unsqueeze(0)
|
1229 |
+
# shape: (1, seq_len, d_model)
|
1230 |
+
pos_emb = self.transformer.wpe(pos) # type: ignore
|
1231 |
+
x = pos_emb + x
|
1232 |
+
|
1233 |
+
# Add input + positional embeddings and apply dropout.
|
1234 |
+
# shape: (batch_size, seq_len, d_model)
|
1235 |
+
x = self.transformer.emb_drop(x) # type: ignore
|
1236 |
+
|
1237 |
+
# Transform the attention mask into what the blocks expect.
|
1238 |
+
if attention_mask is not None and 0.0 in attention_mask:
|
1239 |
+
# shape: (batch_size, 1, 1, seq_len)
|
1240 |
+
attention_mask = attention_mask.to(dtype=torch.float).view(batch_size, -1)[:, None, None, :]
|
1241 |
+
attention_mask = (1.0 - attention_mask) * torch.finfo(attention_mask.dtype).min
|
1242 |
+
else:
|
1243 |
+
attention_mask = None
|
1244 |
+
|
1245 |
+
# Merge attention mask with attention bias.
|
1246 |
+
if (
|
1247 |
+
attention_bias is not None
|
1248 |
+
or attention_mask is not None
|
1249 |
+
or self.config.alibi
|
1250 |
+
# NOTE (epwalsh): we need to initialize the attn bias in order for attn to work properly
|
1251 |
+
# with key+value cache. Otherwise `F.scaled_dot_product_attention()` doesn't seem to compute
|
1252 |
+
# scores correctly.
|
1253 |
+
or past_key_values is not None
|
1254 |
+
):
|
1255 |
+
if attention_bias is None and self.config.alibi:
|
1256 |
+
attention_bias = get_causal_attention_bias(
|
1257 |
+
self.__cache, past_length + seq_len, x.device
|
1258 |
+
) + self.get_alibi_attention_bias(past_length + seq_len, x.device)
|
1259 |
+
elif attention_bias is None:
|
1260 |
+
attention_bias = get_causal_attention_bias(self.__cache, past_length + seq_len, x.device)
|
1261 |
+
elif attention_bias.dtype in (torch.int8, torch.bool):
|
1262 |
+
attention_bias = attention_bias.to(dtype=torch.float)
|
1263 |
+
attention_bias.masked_fill_(attention_bias == 0.0, torch.finfo(attention_bias.dtype).min)
|
1264 |
+
|
1265 |
+
# Transform to the right shape and data type.
|
1266 |
+
mask_len = seq_len
|
1267 |
+
if attention_mask is not None:
|
1268 |
+
mask_len = attention_mask.shape[-1]
|
1269 |
+
elif past_key_values is not None:
|
1270 |
+
mask_len = past_key_values[0][0].shape[-2] + seq_len
|
1271 |
+
attention_bias = attention_bias[:, :, :mask_len, :mask_len].to(dtype=torch.float)
|
1272 |
+
|
1273 |
+
# Add in the masking bias.
|
1274 |
+
if attention_mask is not None:
|
1275 |
+
attention_bias = attention_bias + attention_mask
|
1276 |
+
# Might get -infs after adding attention mask, since dtype.min + dtype.min = -inf.
|
1277 |
+
# `F.scaled_dot_product_attention()` doesn't handle -inf like you'd expect, instead
|
1278 |
+
# it can produce NaNs.
|
1279 |
+
ensure_finite_(attention_bias, check_neg_inf=True, check_pos_inf=False)
|
1280 |
+
|
1281 |
+
attn_key_values: Optional[List[Tuple[torch.Tensor, torch.Tensor]]] = [] if use_cache else None
|
1282 |
+
|
1283 |
+
# decoder layers
|
1284 |
+
all_hidden_states = []
|
1285 |
+
|
1286 |
+
# Apply blocks one-by-one.
|
1287 |
+
if self.config.block_group_size == 1:
|
1288 |
+
for block_idx, block in enumerate(self.transformer.blocks):
|
1289 |
+
if output_hidden_states:
|
1290 |
+
# add hidden states
|
1291 |
+
all_hidden_states.append(x)
|
1292 |
+
|
1293 |
+
layer_past = None if past_key_values is None else past_key_values[block_idx]
|
1294 |
+
if (
|
1295 |
+
(self.activation_checkpointing_strategy == ActivationCheckpointingStrategy.whole_layer)
|
1296 |
+
or (
|
1297 |
+
self.activation_checkpointing_strategy == ActivationCheckpointingStrategy.one_in_two
|
1298 |
+
and block_idx % 2 == 0
|
1299 |
+
)
|
1300 |
+
or (
|
1301 |
+
self.activation_checkpointing_strategy == ActivationCheckpointingStrategy.one_in_three
|
1302 |
+
and block_idx % 3 == 0
|
1303 |
+
)
|
1304 |
+
or (
|
1305 |
+
self.activation_checkpointing_strategy == ActivationCheckpointingStrategy.one_in_four
|
1306 |
+
and block_idx % 4 == 0
|
1307 |
+
)
|
1308 |
+
):
|
1309 |
+
# shape: (batch_size, seq_len, d_model)
|
1310 |
+
x, cache = self._activation_checkpoint_fn(
|
1311 |
+
block, x, attention_bias=attention_bias, layer_past=layer_past, use_cache=use_cache
|
1312 |
+
)
|
1313 |
+
else:
|
1314 |
+
# shape: (batch_size, seq_len, d_model)
|
1315 |
+
x, cache = block(x, attention_bias=attention_bias, layer_past=layer_past, use_cache=use_cache)
|
1316 |
+
if attn_key_values is not None:
|
1317 |
+
assert cache is not None
|
1318 |
+
attn_key_values.append(cache)
|
1319 |
+
else:
|
1320 |
+
for group_idx, block_group in enumerate(self.transformer.block_groups):
|
1321 |
+
if output_hidden_states:
|
1322 |
+
# add hidden states
|
1323 |
+
all_hidden_states.append(x)
|
1324 |
+
|
1325 |
+
layers_past = (
|
1326 |
+
None
|
1327 |
+
if past_key_values is None
|
1328 |
+
else past_key_values[
|
1329 |
+
group_idx * self.config.block_group_size : (group_idx + 1) * self.config.block_group_size
|
1330 |
+
]
|
1331 |
+
)
|
1332 |
+
x, cache = block_group(
|
1333 |
+
x, attention_bias=attention_bias, layers_past=layers_past, use_cache=use_cache
|
1334 |
+
)
|
1335 |
+
if attn_key_values is not None:
|
1336 |
+
assert cache is not None
|
1337 |
+
attn_key_values.extend(cache)
|
1338 |
+
|
1339 |
+
if last_logits_only:
|
1340 |
+
# shape: (batch_size, 1, d_model)
|
1341 |
+
x = x[:, -1, :].unsqueeze(1)
|
1342 |
+
|
1343 |
+
# Apply final layer norm.
|
1344 |
+
# shape: (batch_size, seq_len or 1, d_model)
|
1345 |
+
x = self.transformer.ln_f(x) # type: ignore
|
1346 |
+
if output_hidden_states:
|
1347 |
+
# add final hidden state post-final-layernorm, following HuggingFace's convention
|
1348 |
+
all_hidden_states.append(x)
|
1349 |
+
|
1350 |
+
# Get logits.
|
1351 |
+
# shape: (batch_size, seq_len or 1, vocab_size)
|
1352 |
+
if self.config.weight_tying:
|
1353 |
+
logits = F.linear(x, self.transformer.wte.weight, None) # type: ignore
|
1354 |
+
else:
|
1355 |
+
logits = self.transformer.ff_out(x) # type: ignore
|
1356 |
+
if self.config.scale_logits:
|
1357 |
+
logits.mul_(1 / math.sqrt(self.config.d_model))
|
1358 |
+
|
1359 |
+
return LLaDAOutput(logits=logits, attn_key_values=attn_key_values, hidden_states=tuple(all_hidden_states) if output_hidden_states else None) # type: ignore[arg-type]
|
1360 |
+
|
1361 |
+
|
1362 |
+
def create_model_config_from_pretrained_config(config: LLaDAConfig):
|
1363 |
+
"""
|
1364 |
+
Utility function
|
1365 |
+
"""
|
1366 |
+
|
1367 |
+
kwargs = {}
|
1368 |
+
for field in fields(ModelConfig):
|
1369 |
+
kwargs[field.name] = getattr(config, field.name)
|
1370 |
+
|
1371 |
+
model_config = ModelConfig(**kwargs)
|
1372 |
+
return model_config
|
1373 |
+
|
1374 |
+
|
1375 |
+
class LLaDAModelLM(PreTrainedModel):
|
1376 |
+
"""
|
1377 |
+
Extremely barebones HF model wrapper.
|
1378 |
+
"""
|
1379 |
+
|
1380 |
+
config_class = LLaDAConfig
|
1381 |
+
base_model_prefix = "model"
|
1382 |
+
_no_split_modules = ["LLaDABlock", "LLaDASequentialBlock", "LLaDALlamaBlock"]
|
1383 |
+
|
1384 |
+
def __init__(self, config: LLaDAConfig, model: Optional[LLaDAModel] = None, init_params: bool = False):
|
1385 |
+
super().__init__(config)
|
1386 |
+
|
1387 |
+
if not model:
|
1388 |
+
model_config = create_model_config_from_pretrained_config(config)
|
1389 |
+
# Initialize model (always on CPU to start with so we don't run out of GPU memory).
|
1390 |
+
model_config.init_device = "cpu"
|
1391 |
+
self.model = LLaDAModel(model_config, init_params=init_params)
|
1392 |
+
else:
|
1393 |
+
self.model = model
|
1394 |
+
|
1395 |
+
def forward(
|
1396 |
+
self,
|
1397 |
+
input_ids: torch.LongTensor = None,
|
1398 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1399 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1400 |
+
attention_bias: Optional[torch.Tensor] = None,
|
1401 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
1402 |
+
labels: Optional[torch.LongTensor] = None,
|
1403 |
+
use_cache: Optional[bool] = None,
|
1404 |
+
output_attentions: Optional[bool] = None,
|
1405 |
+
output_hidden_states: Optional[bool] = None,
|
1406 |
+
return_dict: Optional[bool] = None,
|
1407 |
+
cache_position: Optional[Cache] = None, # This is a hack mitigation of an issue in transformers `4.39.x`
|
1408 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
1409 |
+
if use_cache is None:
|
1410 |
+
use_cache = self.config.use_cache
|
1411 |
+
|
1412 |
+
if output_attentions:
|
1413 |
+
raise ValueError("output_attentions is not yet supported in LLaDA")
|
1414 |
+
|
1415 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1416 |
+
|
1417 |
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
1418 |
+
outputs = self.model.forward(
|
1419 |
+
input_ids=input_ids,
|
1420 |
+
input_embeddings=inputs_embeds,
|
1421 |
+
attention_mask=attention_mask,
|
1422 |
+
attention_bias=attention_bias,
|
1423 |
+
past_key_values=past_key_values,
|
1424 |
+
use_cache=use_cache,
|
1425 |
+
output_hidden_states=output_hidden_states,
|
1426 |
+
)
|
1427 |
+
|
1428 |
+
logits = outputs.logits
|
1429 |
+
hidden_states = outputs.hidden_states
|
1430 |
+
|
1431 |
+
loss = None
|
1432 |
+
if labels is not None:
|
1433 |
+
import warnings
|
1434 |
+
warnings.warn("Note that for LLaDA, you cannot calculate the loss here.", UserWarning)
|
1435 |
+
if not return_dict:
|
1436 |
+
output = (logits,) + outputs[1:]
|
1437 |
+
return (loss,) + output if loss is not None else output
|
1438 |
+
|
1439 |
+
return CausalLMOutputWithPast(
|
1440 |
+
logits=logits,
|
1441 |
+
past_key_values=outputs.attn_key_values,
|
1442 |
+
hidden_states=hidden_states,
|
1443 |
+
)
|
1444 |
+
|
1445 |
+
def can_generate(self) -> bool:
|
1446 |
+
return True
|
1447 |
+
|
1448 |
+
def prepare_inputs_for_generation(
|
1449 |
+
self, input_ids: torch.LongTensor, past_key_values: Optional[List[Tuple]] = None, **kwargs
|
1450 |
+
):
|
1451 |
+
if past_key_values:
|
1452 |
+
# This is because we want the model to only process the last generated token.
|
1453 |
+
input_ids = input_ids[:, -1:]
|
1454 |
+
model_inputs = {"input_ids": input_ids, "past_key_values": past_key_values}
|
1455 |
+
|
1456 |
+
model_inputs.update(kwargs)
|
1457 |
+
model_inputs["use_cache"] = kwargs.pop("use_cache", self.config.use_cache)
|
1458 |
+
return model_inputs
|
1459 |
+
|
1460 |
+
# TODO: these are required to make the implementation complete.
|
1461 |
+
# def resize_position_embeddings(self, new_num_position_embeddings: int):
|
1462 |
+
# pass
|
1463 |
+
#
|
1464 |
+
# def get_position_embeddings(self) -> Union[nn.Embedding, Tuple[nn.Embedding]]:
|
1465 |
+
# pass
|
1466 |
+
#
|
1467 |
+
# def _reorder_cache(self, past_key_values, beam_idx):
|
1468 |
+
# pass
|
1469 |
+
|
1470 |
+
def get_input_embeddings(self) -> torch.nn.Module:
|
1471 |
+
return self.model.transformer.wte
|
1472 |
+
|
1473 |
+
def set_input_embeddings(self, value: torch.nn.Module):
|
1474 |
+
self.model.transformer.wte = value
|
1475 |
+
|
1476 |
+
def get_output_embeddings(self):
|
1477 |
+
if self.config.weight_tying:
|
1478 |
+
return self.model.transformer.wte
|
1479 |
+
else:
|
1480 |
+
return self.model.transformer.ff_out
|
1481 |
+
|
1482 |
+
def set_output_embeddings(self, value: torch.nn.Module):
|
1483 |
+
if self.config.weight_tying:
|
1484 |
+
self.model.transformer.wte = value
|
1485 |
+
else:
|
1486 |
+
self.model.transformer.ff_out = value
|
1487 |
+
|
1488 |
+
def tie_weights(self):
|
1489 |
+
if self.config.weight_tying:
|
1490 |
+
self.model.transformer.ff_out = self.model.transformer.wte
|
1491 |
+
|
1492 |
+
# Register the model so that it is available for transformer pipelines, auto-loading, etc.
|
1493 |
+
AutoModel.register(LLaDAConfig, LLaDAModelLM)
|
special_tokens_map.json
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
"<role>",
|
4 |
+
"</role>",
|
5 |
+
"<|arithmetic_start|>",
|
6 |
+
"<|arithmetic_end|>",
|
7 |
+
"<|number_start|>",
|
8 |
+
"<|number_end|>"
|
9 |
+
],
|
10 |
+
"bos_token": {
|
11 |
+
"content": "<|startoftext|>",
|
12 |
+
"lstrip": false,
|
13 |
+
"normalized": false,
|
14 |
+
"rstrip": false,
|
15 |
+
"single_word": false
|
16 |
+
},
|
17 |
+
"cls_token": {
|
18 |
+
"content": "[CLS]",
|
19 |
+
"lstrip": false,
|
20 |
+
"normalized": false,
|
21 |
+
"rstrip": false,
|
22 |
+
"single_word": false
|
23 |
+
},
|
24 |
+
"eos_token": {
|
25 |
+
"content": "<|endoftext|>",
|
26 |
+
"lstrip": false,
|
27 |
+
"normalized": false,
|
28 |
+
"rstrip": false,
|
29 |
+
"single_word": false
|
30 |
+
},
|
31 |
+
"pad_token": {
|
32 |
+
"content": "<|endoftext|>",
|
33 |
+
"lstrip": false,
|
34 |
+
"normalized": false,
|
35 |
+
"rstrip": false,
|
36 |
+
"single_word": false
|
37 |
+
}
|
38 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,2183 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": false,
|
3 |
+
"add_eos_token": false,
|
4 |
+
"added_tokens_decoder": {
|
5 |
+
"126080": {
|
6 |
+
"content": "<|startoftext|>",
|
7 |
+
"lstrip": false,
|
8 |
+
"normalized": false,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false,
|
11 |
+
"special": true
|
12 |
+
},
|
13 |
+
"126081": {
|
14 |
+
"content": "<|endoftext|>",
|
15 |
+
"lstrip": false,
|
16 |
+
"normalized": false,
|
17 |
+
"rstrip": false,
|
18 |
+
"single_word": false,
|
19 |
+
"special": true
|
20 |
+
},
|
21 |
+
"126082": {
|
22 |
+
"content": "[CLS]",
|
23 |
+
"lstrip": false,
|
24 |
+
"normalized": false,
|
25 |
+
"rstrip": false,
|
26 |
+
"single_word": false,
|
27 |
+
"special": true
|
28 |
+
},
|
29 |
+
"126083": {
|
30 |
+
"content": "[gMASK]",
|
31 |
+
"lstrip": false,
|
32 |
+
"normalized": false,
|
33 |
+
"rstrip": false,
|
34 |
+
"single_word": false,
|
35 |
+
"special": true
|
36 |
+
},
|
37 |
+
"126084": {
|
38 |
+
"content": "<|reserved_token_0|>",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false,
|
43 |
+
"special": true
|
44 |
+
},
|
45 |
+
"126085": {
|
46 |
+
"content": "<|reserved_token_1|>",
|
47 |
+
"lstrip": false,
|
48 |
+
"normalized": false,
|
49 |
+
"rstrip": false,
|
50 |
+
"single_word": false,
|
51 |
+
"special": true
|
52 |
+
},
|
53 |
+
"126086": {
|
54 |
+
"content": "<|reserved_token_2|>",
|
55 |
+
"lstrip": false,
|
56 |
+
"normalized": false,
|
57 |
+
"rstrip": false,
|
58 |
+
"single_word": false,
|
59 |
+
"special": true
|
60 |
+
},
|
61 |
+
"126087": {
|
62 |
+
"content": "<|reserved_token_3|>",
|
63 |
+
"lstrip": false,
|
64 |
+
"normalized": false,
|
65 |
+
"rstrip": false,
|
66 |
+
"single_word": false,
|
67 |
+
"special": true
|
68 |
+
},
|
69 |
+
"126088": {
|
70 |
+
"content": "<|reserved_token_4|>",
|
71 |
+
"lstrip": false,
|
72 |
+
"normalized": false,
|
73 |
+
"rstrip": false,
|
74 |
+
"single_word": false,
|
75 |
+
"special": true
|
76 |
+
},
|
77 |
+
"126089": {
|
78 |
+
"content": "<|reserved_token_5|>",
|
79 |
+
"lstrip": false,
|
80 |
+
"normalized": false,
|
81 |
+
"rstrip": false,
|
82 |
+
"single_word": false,
|
83 |
+
"special": true
|
84 |
+
},
|
85 |
+
"126090": {
|
86 |
+
"content": "<|reserved_token_6|>",
|
87 |
+
"lstrip": false,
|
88 |
+
"normalized": false,
|
89 |
+
"rstrip": false,
|
90 |
+
"single_word": false,
|
91 |
+
"special": true
|
92 |
+
},
|
93 |
+
"126091": {
|
94 |
+
"content": "<|reserved_token_7|>",
|
95 |
+
"lstrip": false,
|
96 |
+
"normalized": false,
|
97 |
+
"rstrip": false,
|
98 |
+
"single_word": false,
|
99 |
+
"special": true
|
100 |
+
},
|
101 |
+
"126092": {
|
102 |
+
"content": "<|reserved_token_8|>",
|
103 |
+
"lstrip": false,
|
104 |
+
"normalized": false,
|
105 |
+
"rstrip": false,
|
106 |
+
"single_word": false,
|
107 |
+
"special": true
|
108 |
+
},
|
109 |
+
"126093": {
|
110 |
+
"content": "<|reserved_token_9|>",
|
111 |
+
"lstrip": false,
|
112 |
+
"normalized": false,
|
113 |
+
"rstrip": false,
|
114 |
+
"single_word": false,
|
115 |
+
"special": true
|
116 |
+
},
|
117 |
+
"126094": {
|
118 |
+
"content": "<|reserved_token_10|>",
|
119 |
+
"lstrip": false,
|
120 |
+
"normalized": false,
|
121 |
+
"rstrip": false,
|
122 |
+
"single_word": false,
|
123 |
+
"special": true
|
124 |
+
},
|
125 |
+
"126095": {
|
126 |
+
"content": "<|reserved_token_11|>",
|
127 |
+
"lstrip": false,
|
128 |
+
"normalized": false,
|
129 |
+
"rstrip": false,
|
130 |
+
"single_word": false,
|
131 |
+
"special": true
|
132 |
+
},
|
133 |
+
"126096": {
|
134 |
+
"content": "<|reserved_token_12|>",
|
135 |
+
"lstrip": false,
|
136 |
+
"normalized": false,
|
137 |
+
"rstrip": false,
|
138 |
+
"single_word": false,
|
139 |
+
"special": true
|
140 |
+
},
|
141 |
+
"126097": {
|
142 |
+
"content": "<|reserved_token_13|>",
|
143 |
+
"lstrip": false,
|
144 |
+
"normalized": false,
|
145 |
+
"rstrip": false,
|
146 |
+
"single_word": false,
|
147 |
+
"special": true
|
148 |
+
},
|
149 |
+
"126098": {
|
150 |
+
"content": "<|reserved_token_14|>",
|
151 |
+
"lstrip": false,
|
152 |
+
"normalized": false,
|
153 |
+
"rstrip": false,
|
154 |
+
"single_word": false,
|
155 |
+
"special": true
|
156 |
+
},
|
157 |
+
"126099": {
|
158 |
+
"content": "<|reserved_token_15|>",
|
159 |
+
"lstrip": false,
|
160 |
+
"normalized": false,
|
161 |
+
"rstrip": false,
|
162 |
+
"single_word": false,
|
163 |
+
"special": true
|
164 |
+
},
|
165 |
+
"126100": {
|
166 |
+
"content": "<|reserved_token_16|>",
|
167 |
+
"lstrip": false,
|
168 |
+
"normalized": false,
|
169 |
+
"rstrip": false,
|
170 |
+
"single_word": false,
|
171 |
+
"special": true
|
172 |
+
},
|
173 |
+
"126101": {
|
174 |
+
"content": "<|reserved_token_17|>",
|
175 |
+
"lstrip": false,
|
176 |
+
"normalized": false,
|
177 |
+
"rstrip": false,
|
178 |
+
"single_word": false,
|
179 |
+
"special": true
|
180 |
+
},
|
181 |
+
"126102": {
|
182 |
+
"content": "<|reserved_token_18|>",
|
183 |
+
"lstrip": false,
|
184 |
+
"normalized": false,
|
185 |
+
"rstrip": false,
|
186 |
+
"single_word": false,
|
187 |
+
"special": true
|
188 |
+
},
|
189 |
+
"126103": {
|
190 |
+
"content": "<|reserved_token_19|>",
|
191 |
+
"lstrip": false,
|
192 |
+
"normalized": false,
|
193 |
+
"rstrip": false,
|
194 |
+
"single_word": false,
|
195 |
+
"special": true
|
196 |
+
},
|
197 |
+
"126104": {
|
198 |
+
"content": "<|reserved_token_20|>",
|
199 |
+
"lstrip": false,
|
200 |
+
"normalized": false,
|
201 |
+
"rstrip": false,
|
202 |
+
"single_word": false,
|
203 |
+
"special": true
|
204 |
+
},
|
205 |
+
"126105": {
|
206 |
+
"content": "<|reserved_token_21|>",
|
207 |
+
"lstrip": false,
|
208 |
+
"normalized": false,
|
209 |
+
"rstrip": false,
|
210 |
+
"single_word": false,
|
211 |
+
"special": true
|
212 |
+
},
|
213 |
+
"126106": {
|
214 |
+
"content": "<|reserved_token_22|>",
|
215 |
+
"lstrip": false,
|
216 |
+
"normalized": false,
|
217 |
+
"rstrip": false,
|
218 |
+
"single_word": false,
|
219 |
+
"special": true
|
220 |
+
},
|
221 |
+
"126107": {
|
222 |
+
"content": "<|reserved_token_23|>",
|
223 |
+
"lstrip": false,
|
224 |
+
"normalized": false,
|
225 |
+
"rstrip": false,
|
226 |
+
"single_word": false,
|
227 |
+
"special": true
|
228 |
+
},
|
229 |
+
"126108": {
|
230 |
+
"content": "<|reserved_token_24|>",
|
231 |
+
"lstrip": false,
|
232 |
+
"normalized": false,
|
233 |
+
"rstrip": false,
|
234 |
+
"single_word": false,
|
235 |
+
"special": true
|
236 |
+
},
|
237 |
+
"126109": {
|
238 |
+
"content": "<|reserved_token_25|>",
|
239 |
+
"lstrip": false,
|
240 |
+
"normalized": false,
|
241 |
+
"rstrip": false,
|
242 |
+
"single_word": false,
|
243 |
+
"special": true
|
244 |
+
},
|
245 |
+
"126110": {
|
246 |
+
"content": "<|reserved_token_26|>",
|
247 |
+
"lstrip": false,
|
248 |
+
"normalized": false,
|
249 |
+
"rstrip": false,
|
250 |
+
"single_word": false,
|
251 |
+
"special": true
|
252 |
+
},
|
253 |
+
"126111": {
|
254 |
+
"content": "<|reserved_token_27|>",
|
255 |
+
"lstrip": false,
|
256 |
+
"normalized": false,
|
257 |
+
"rstrip": false,
|
258 |
+
"single_word": false,
|
259 |
+
"special": true
|
260 |
+
},
|
261 |
+
"126112": {
|
262 |
+
"content": "<|reserved_token_28|>",
|
263 |
+
"lstrip": false,
|
264 |
+
"normalized": false,
|
265 |
+
"rstrip": false,
|
266 |
+
"single_word": false,
|
267 |
+
"special": true
|
268 |
+
},
|
269 |
+
"126113": {
|
270 |
+
"content": "<|reserved_token_29|>",
|
271 |
+
"lstrip": false,
|
272 |
+
"normalized": false,
|
273 |
+
"rstrip": false,
|
274 |
+
"single_word": false,
|
275 |
+
"special": true
|
276 |
+
},
|
277 |
+
"126114": {
|
278 |
+
"content": "<|reserved_token_30|>",
|
279 |
+
"lstrip": false,
|
280 |
+
"normalized": false,
|
281 |
+
"rstrip": false,
|
282 |
+
"single_word": false,
|
283 |
+
"special": true
|
284 |
+
},
|
285 |
+
"126115": {
|
286 |
+
"content": "<|reserved_token_31|>",
|
287 |
+
"lstrip": false,
|
288 |
+
"normalized": false,
|
289 |
+
"rstrip": false,
|
290 |
+
"single_word": false,
|
291 |
+
"special": true
|
292 |
+
},
|
293 |
+
"126116": {
|
294 |
+
"content": "<|reserved_token_32|>",
|
295 |
+
"lstrip": false,
|
296 |
+
"normalized": false,
|
297 |
+
"rstrip": false,
|
298 |
+
"single_word": false,
|
299 |
+
"special": true
|
300 |
+
},
|
301 |
+
"126117": {
|
302 |
+
"content": "<|reserved_token_33|>",
|
303 |
+
"lstrip": false,
|
304 |
+
"normalized": false,
|
305 |
+
"rstrip": false,
|
306 |
+
"single_word": false,
|
307 |
+
"special": true
|
308 |
+
},
|
309 |
+
"126118": {
|
310 |
+
"content": "<|reserved_token_34|>",
|
311 |
+
"lstrip": false,
|
312 |
+
"normalized": false,
|
313 |
+
"rstrip": false,
|
314 |
+
"single_word": false,
|
315 |
+
"special": true
|
316 |
+
},
|
317 |
+
"126119": {
|
318 |
+
"content": "<|reserved_token_35|>",
|
319 |
+
"lstrip": false,
|
320 |
+
"normalized": false,
|
321 |
+
"rstrip": false,
|
322 |
+
"single_word": false,
|
323 |
+
"special": true
|
324 |
+
},
|
325 |
+
"126120": {
|
326 |
+
"content": "<|reserved_token_36|>",
|
327 |
+
"lstrip": false,
|
328 |
+
"normalized": false,
|
329 |
+
"rstrip": false,
|
330 |
+
"single_word": false,
|
331 |
+
"special": true
|
332 |
+
},
|
333 |
+
"126121": {
|
334 |
+
"content": "<|reserved_token_37|>",
|
335 |
+
"lstrip": false,
|
336 |
+
"normalized": false,
|
337 |
+
"rstrip": false,
|
338 |
+
"single_word": false,
|
339 |
+
"special": true
|
340 |
+
},
|
341 |
+
"126122": {
|
342 |
+
"content": "<|reserved_token_38|>",
|
343 |
+
"lstrip": false,
|
344 |
+
"normalized": false,
|
345 |
+
"rstrip": false,
|
346 |
+
"single_word": false,
|
347 |
+
"special": true
|
348 |
+
},
|
349 |
+
"126123": {
|
350 |
+
"content": "<|reserved_token_39|>",
|
351 |
+
"lstrip": false,
|
352 |
+
"normalized": false,
|
353 |
+
"rstrip": false,
|
354 |
+
"single_word": false,
|
355 |
+
"special": true
|
356 |
+
},
|
357 |
+
"126124": {
|
358 |
+
"content": "<|reserved_token_40|>",
|
359 |
+
"lstrip": false,
|
360 |
+
"normalized": false,
|
361 |
+
"rstrip": false,
|
362 |
+
"single_word": false,
|
363 |
+
"special": true
|
364 |
+
},
|
365 |
+
"126125": {
|
366 |
+
"content": "<|reserved_token_41|>",
|
367 |
+
"lstrip": false,
|
368 |
+
"normalized": false,
|
369 |
+
"rstrip": false,
|
370 |
+
"single_word": false,
|
371 |
+
"special": true
|
372 |
+
},
|
373 |
+
"126126": {
|
374 |
+
"content": "<|reserved_token_42|>",
|
375 |
+
"lstrip": false,
|
376 |
+
"normalized": false,
|
377 |
+
"rstrip": false,
|
378 |
+
"single_word": false,
|
379 |
+
"special": true
|
380 |
+
},
|
381 |
+
"126127": {
|
382 |
+
"content": "<|reserved_token_43|>",
|
383 |
+
"lstrip": false,
|
384 |
+
"normalized": false,
|
385 |
+
"rstrip": false,
|
386 |
+
"single_word": false,
|
387 |
+
"special": true
|
388 |
+
},
|
389 |
+
"126128": {
|
390 |
+
"content": "<|reserved_token_44|>",
|
391 |
+
"lstrip": false,
|
392 |
+
"normalized": false,
|
393 |
+
"rstrip": false,
|
394 |
+
"single_word": false,
|
395 |
+
"special": true
|
396 |
+
},
|
397 |
+
"126129": {
|
398 |
+
"content": "<|reserved_token_45|>",
|
399 |
+
"lstrip": false,
|
400 |
+
"normalized": false,
|
401 |
+
"rstrip": false,
|
402 |
+
"single_word": false,
|
403 |
+
"special": true
|
404 |
+
},
|
405 |
+
"126130": {
|
406 |
+
"content": "<|reserved_token_46|>",
|
407 |
+
"lstrip": false,
|
408 |
+
"normalized": false,
|
409 |
+
"rstrip": false,
|
410 |
+
"single_word": false,
|
411 |
+
"special": true
|
412 |
+
},
|
413 |
+
"126131": {
|
414 |
+
"content": "<|reserved_token_47|>",
|
415 |
+
"lstrip": false,
|
416 |
+
"normalized": false,
|
417 |
+
"rstrip": false,
|
418 |
+
"single_word": false,
|
419 |
+
"special": true
|
420 |
+
},
|
421 |
+
"126132": {
|
422 |
+
"content": "<|reserved_token_48|>",
|
423 |
+
"lstrip": false,
|
424 |
+
"normalized": false,
|
425 |
+
"rstrip": false,
|
426 |
+
"single_word": false,
|
427 |
+
"special": true
|
428 |
+
},
|
429 |
+
"126133": {
|
430 |
+
"content": "<|reserved_token_49|>",
|
431 |
+
"lstrip": false,
|
432 |
+
"normalized": false,
|
433 |
+
"rstrip": false,
|
434 |
+
"single_word": false,
|
435 |
+
"special": true
|
436 |
+
},
|
437 |
+
"126134": {
|
438 |
+
"content": "<|reserved_token_50|>",
|
439 |
+
"lstrip": false,
|
440 |
+
"normalized": false,
|
441 |
+
"rstrip": false,
|
442 |
+
"single_word": false,
|
443 |
+
"special": true
|
444 |
+
},
|
445 |
+
"126135": {
|
446 |
+
"content": "<|reserved_token_51|>",
|
447 |
+
"lstrip": false,
|
448 |
+
"normalized": false,
|
449 |
+
"rstrip": false,
|
450 |
+
"single_word": false,
|
451 |
+
"special": true
|
452 |
+
},
|
453 |
+
"126136": {
|
454 |
+
"content": "<|reserved_token_52|>",
|
455 |
+
"lstrip": false,
|
456 |
+
"normalized": false,
|
457 |
+
"rstrip": false,
|
458 |
+
"single_word": false,
|
459 |
+
"special": true
|
460 |
+
},
|
461 |
+
"126137": {
|
462 |
+
"content": "<|reserved_token_53|>",
|
463 |
+
"lstrip": false,
|
464 |
+
"normalized": false,
|
465 |
+
"rstrip": false,
|
466 |
+
"single_word": false,
|
467 |
+
"special": true
|
468 |
+
},
|
469 |
+
"126138": {
|
470 |
+
"content": "<|reserved_token_54|>",
|
471 |
+
"lstrip": false,
|
472 |
+
"normalized": false,
|
473 |
+
"rstrip": false,
|
474 |
+
"single_word": false,
|
475 |
+
"special": true
|
476 |
+
},
|
477 |
+
"126139": {
|
478 |
+
"content": "<|reserved_token_55|>",
|
479 |
+
"lstrip": false,
|
480 |
+
"normalized": false,
|
481 |
+
"rstrip": false,
|
482 |
+
"single_word": false,
|
483 |
+
"special": true
|
484 |
+
},
|
485 |
+
"126140": {
|
486 |
+
"content": "<|reserved_token_56|>",
|
487 |
+
"lstrip": false,
|
488 |
+
"normalized": false,
|
489 |
+
"rstrip": false,
|
490 |
+
"single_word": false,
|
491 |
+
"special": true
|
492 |
+
},
|
493 |
+
"126141": {
|
494 |
+
"content": "<|reserved_token_57|>",
|
495 |
+
"lstrip": false,
|
496 |
+
"normalized": false,
|
497 |
+
"rstrip": false,
|
498 |
+
"single_word": false,
|
499 |
+
"special": true
|
500 |
+
},
|
501 |
+
"126142": {
|
502 |
+
"content": "<|reserved_token_58|>",
|
503 |
+
"lstrip": false,
|
504 |
+
"normalized": false,
|
505 |
+
"rstrip": false,
|
506 |
+
"single_word": false,
|
507 |
+
"special": true
|
508 |
+
},
|
509 |
+
"126143": {
|
510 |
+
"content": "<|reserved_token_59|>",
|
511 |
+
"lstrip": false,
|
512 |
+
"normalized": false,
|
513 |
+
"rstrip": false,
|
514 |
+
"single_word": false,
|
515 |
+
"special": true
|
516 |
+
},
|
517 |
+
"126144": {
|
518 |
+
"content": "<|reserved_token_60|>",
|
519 |
+
"lstrip": false,
|
520 |
+
"normalized": false,
|
521 |
+
"rstrip": false,
|
522 |
+
"single_word": false,
|
523 |
+
"special": true
|
524 |
+
},
|
525 |
+
"126145": {
|
526 |
+
"content": "<|reserved_token_61|>",
|
527 |
+
"lstrip": false,
|
528 |
+
"normalized": false,
|
529 |
+
"rstrip": false,
|
530 |
+
"single_word": false,
|
531 |
+
"special": true
|
532 |
+
},
|
533 |
+
"126146": {
|
534 |
+
"content": "<|reserved_token_62|>",
|
535 |
+
"lstrip": false,
|
536 |
+
"normalized": false,
|
537 |
+
"rstrip": false,
|
538 |
+
"single_word": false,
|
539 |
+
"special": true
|
540 |
+
},
|
541 |
+
"126147": {
|
542 |
+
"content": "<|reserved_token_63|>",
|
543 |
+
"lstrip": false,
|
544 |
+
"normalized": false,
|
545 |
+
"rstrip": false,
|
546 |
+
"single_word": false,
|
547 |
+
"special": true
|
548 |
+
},
|
549 |
+
"126148": {
|
550 |
+
"content": "<|reserved_token_64|>",
|
551 |
+
"lstrip": false,
|
552 |
+
"normalized": false,
|
553 |
+
"rstrip": false,
|
554 |
+
"single_word": false,
|
555 |
+
"special": true
|
556 |
+
},
|
557 |
+
"126149": {
|
558 |
+
"content": "<|reserved_token_65|>",
|
559 |
+
"lstrip": false,
|
560 |
+
"normalized": false,
|
561 |
+
"rstrip": false,
|
562 |
+
"single_word": false,
|
563 |
+
"special": true
|
564 |
+
},
|
565 |
+
"126150": {
|
566 |
+
"content": "<|reserved_token_66|>",
|
567 |
+
"lstrip": false,
|
568 |
+
"normalized": false,
|
569 |
+
"rstrip": false,
|
570 |
+
"single_word": false,
|
571 |
+
"special": true
|
572 |
+
},
|
573 |
+
"126151": {
|
574 |
+
"content": "<|reserved_token_67|>",
|
575 |
+
"lstrip": false,
|
576 |
+
"normalized": false,
|
577 |
+
"rstrip": false,
|
578 |
+
"single_word": false,
|
579 |
+
"special": true
|
580 |
+
},
|
581 |
+
"126152": {
|
582 |
+
"content": "<|reserved_token_68|>",
|
583 |
+
"lstrip": false,
|
584 |
+
"normalized": false,
|
585 |
+
"rstrip": false,
|
586 |
+
"single_word": false,
|
587 |
+
"special": true
|
588 |
+
},
|
589 |
+
"126153": {
|
590 |
+
"content": "<|reserved_token_69|>",
|
591 |
+
"lstrip": false,
|
592 |
+
"normalized": false,
|
593 |
+
"rstrip": false,
|
594 |
+
"single_word": false,
|
595 |
+
"special": true
|
596 |
+
},
|
597 |
+
"126154": {
|
598 |
+
"content": "<|reserved_token_70|>",
|
599 |
+
"lstrip": false,
|
600 |
+
"normalized": false,
|
601 |
+
"rstrip": false,
|
602 |
+
"single_word": false,
|
603 |
+
"special": true
|
604 |
+
},
|
605 |
+
"126155": {
|
606 |
+
"content": "<|reserved_token_71|>",
|
607 |
+
"lstrip": false,
|
608 |
+
"normalized": false,
|
609 |
+
"rstrip": false,
|
610 |
+
"single_word": false,
|
611 |
+
"special": true
|
612 |
+
},
|
613 |
+
"126156": {
|
614 |
+
"content": "<|reserved_token_72|>",
|
615 |
+
"lstrip": false,
|
616 |
+
"normalized": false,
|
617 |
+
"rstrip": false,
|
618 |
+
"single_word": false,
|
619 |
+
"special": true
|
620 |
+
},
|
621 |
+
"126157": {
|
622 |
+
"content": "<|reserved_token_73|>",
|
623 |
+
"lstrip": false,
|
624 |
+
"normalized": false,
|
625 |
+
"rstrip": false,
|
626 |
+
"single_word": false,
|
627 |
+
"special": true
|
628 |
+
},
|
629 |
+
"126158": {
|
630 |
+
"content": "<|reserved_token_74|>",
|
631 |
+
"lstrip": false,
|
632 |
+
"normalized": false,
|
633 |
+
"rstrip": false,
|
634 |
+
"single_word": false,
|
635 |
+
"special": true
|
636 |
+
},
|
637 |
+
"126159": {
|
638 |
+
"content": "<|reserved_token_75|>",
|
639 |
+
"lstrip": false,
|
640 |
+
"normalized": false,
|
641 |
+
"rstrip": false,
|
642 |
+
"single_word": false,
|
643 |
+
"special": true
|
644 |
+
},
|
645 |
+
"126160": {
|
646 |
+
"content": "<|reserved_token_76|>",
|
647 |
+
"lstrip": false,
|
648 |
+
"normalized": false,
|
649 |
+
"rstrip": false,
|
650 |
+
"single_word": false,
|
651 |
+
"special": true
|
652 |
+
},
|
653 |
+
"126161": {
|
654 |
+
"content": "<|reserved_token_77|>",
|
655 |
+
"lstrip": false,
|
656 |
+
"normalized": false,
|
657 |
+
"rstrip": false,
|
658 |
+
"single_word": false,
|
659 |
+
"special": true
|
660 |
+
},
|
661 |
+
"126162": {
|
662 |
+
"content": "<|reserved_token_78|>",
|
663 |
+
"lstrip": false,
|
664 |
+
"normalized": false,
|
665 |
+
"rstrip": false,
|
666 |
+
"single_word": false,
|
667 |
+
"special": true
|
668 |
+
},
|
669 |
+
"126163": {
|
670 |
+
"content": "<|reserved_token_79|>",
|
671 |
+
"lstrip": false,
|
672 |
+
"normalized": false,
|
673 |
+
"rstrip": false,
|
674 |
+
"single_word": false,
|
675 |
+
"special": true
|
676 |
+
},
|
677 |
+
"126164": {
|
678 |
+
"content": "<|reserved_token_80|>",
|
679 |
+
"lstrip": false,
|
680 |
+
"normalized": false,
|
681 |
+
"rstrip": false,
|
682 |
+
"single_word": false,
|
683 |
+
"special": true
|
684 |
+
},
|
685 |
+
"126165": {
|
686 |
+
"content": "<|reserved_token_81|>",
|
687 |
+
"lstrip": false,
|
688 |
+
"normalized": false,
|
689 |
+
"rstrip": false,
|
690 |
+
"single_word": false,
|
691 |
+
"special": true
|
692 |
+
},
|
693 |
+
"126166": {
|
694 |
+
"content": "<|reserved_token_82|>",
|
695 |
+
"lstrip": false,
|
696 |
+
"normalized": false,
|
697 |
+
"rstrip": false,
|
698 |
+
"single_word": false,
|
699 |
+
"special": true
|
700 |
+
},
|
701 |
+
"126167": {
|
702 |
+
"content": "<|reserved_token_83|>",
|
703 |
+
"lstrip": false,
|
704 |
+
"normalized": false,
|
705 |
+
"rstrip": false,
|
706 |
+
"single_word": false,
|
707 |
+
"special": true
|
708 |
+
},
|
709 |
+
"126168": {
|
710 |
+
"content": "<|reserved_token_84|>",
|
711 |
+
"lstrip": false,
|
712 |
+
"normalized": false,
|
713 |
+
"rstrip": false,
|
714 |
+
"single_word": false,
|
715 |
+
"special": true
|
716 |
+
},
|
717 |
+
"126169": {
|
718 |
+
"content": "<|reserved_token_85|>",
|
719 |
+
"lstrip": false,
|
720 |
+
"normalized": false,
|
721 |
+
"rstrip": false,
|
722 |
+
"single_word": false,
|
723 |
+
"special": true
|
724 |
+
},
|
725 |
+
"126170": {
|
726 |
+
"content": "<|reserved_token_86|>",
|
727 |
+
"lstrip": false,
|
728 |
+
"normalized": false,
|
729 |
+
"rstrip": false,
|
730 |
+
"single_word": false,
|
731 |
+
"special": true
|
732 |
+
},
|
733 |
+
"126171": {
|
734 |
+
"content": "<|reserved_token_87|>",
|
735 |
+
"lstrip": false,
|
736 |
+
"normalized": false,
|
737 |
+
"rstrip": false,
|
738 |
+
"single_word": false,
|
739 |
+
"special": true
|
740 |
+
},
|
741 |
+
"126172": {
|
742 |
+
"content": "<|reserved_token_88|>",
|
743 |
+
"lstrip": false,
|
744 |
+
"normalized": false,
|
745 |
+
"rstrip": false,
|
746 |
+
"single_word": false,
|
747 |
+
"special": true
|
748 |
+
},
|
749 |
+
"126173": {
|
750 |
+
"content": "<|reserved_token_89|>",
|
751 |
+
"lstrip": false,
|
752 |
+
"normalized": false,
|
753 |
+
"rstrip": false,
|
754 |
+
"single_word": false,
|
755 |
+
"special": true
|
756 |
+
},
|
757 |
+
"126174": {
|
758 |
+
"content": "<|reserved_token_90|>",
|
759 |
+
"lstrip": false,
|
760 |
+
"normalized": false,
|
761 |
+
"rstrip": false,
|
762 |
+
"single_word": false,
|
763 |
+
"special": true
|
764 |
+
},
|
765 |
+
"126175": {
|
766 |
+
"content": "<|reserved_token_91|>",
|
767 |
+
"lstrip": false,
|
768 |
+
"normalized": false,
|
769 |
+
"rstrip": false,
|
770 |
+
"single_word": false,
|
771 |
+
"special": true
|
772 |
+
},
|
773 |
+
"126176": {
|
774 |
+
"content": "<|reserved_token_92|>",
|
775 |
+
"lstrip": false,
|
776 |
+
"normalized": false,
|
777 |
+
"rstrip": false,
|
778 |
+
"single_word": false,
|
779 |
+
"special": true
|
780 |
+
},
|
781 |
+
"126177": {
|
782 |
+
"content": "<|reserved_token_93|>",
|
783 |
+
"lstrip": false,
|
784 |
+
"normalized": false,
|
785 |
+
"rstrip": false,
|
786 |
+
"single_word": false,
|
787 |
+
"special": true
|
788 |
+
},
|
789 |
+
"126178": {
|
790 |
+
"content": "<|reserved_token_94|>",
|
791 |
+
"lstrip": false,
|
792 |
+
"normalized": false,
|
793 |
+
"rstrip": false,
|
794 |
+
"single_word": false,
|
795 |
+
"special": true
|
796 |
+
},
|
797 |
+
"126179": {
|
798 |
+
"content": "<|reserved_token_95|>",
|
799 |
+
"lstrip": false,
|
800 |
+
"normalized": false,
|
801 |
+
"rstrip": false,
|
802 |
+
"single_word": false,
|
803 |
+
"special": true
|
804 |
+
},
|
805 |
+
"126180": {
|
806 |
+
"content": "<|reserved_token_96|>",
|
807 |
+
"lstrip": false,
|
808 |
+
"normalized": false,
|
809 |
+
"rstrip": false,
|
810 |
+
"single_word": false,
|
811 |
+
"special": true
|
812 |
+
},
|
813 |
+
"126181": {
|
814 |
+
"content": "<|reserved_token_97|>",
|
815 |
+
"lstrip": false,
|
816 |
+
"normalized": false,
|
817 |
+
"rstrip": false,
|
818 |
+
"single_word": false,
|
819 |
+
"special": true
|
820 |
+
},
|
821 |
+
"126182": {
|
822 |
+
"content": "<|reserved_token_98|>",
|
823 |
+
"lstrip": false,
|
824 |
+
"normalized": false,
|
825 |
+
"rstrip": false,
|
826 |
+
"single_word": false,
|
827 |
+
"special": true
|
828 |
+
},
|
829 |
+
"126183": {
|
830 |
+
"content": "<|reserved_token_99|>",
|
831 |
+
"lstrip": false,
|
832 |
+
"normalized": false,
|
833 |
+
"rstrip": false,
|
834 |
+
"single_word": false,
|
835 |
+
"special": true
|
836 |
+
},
|
837 |
+
"126184": {
|
838 |
+
"content": "<|reserved_token_100|>",
|
839 |
+
"lstrip": false,
|
840 |
+
"normalized": false,
|
841 |
+
"rstrip": false,
|
842 |
+
"single_word": false,
|
843 |
+
"special": true
|
844 |
+
},
|
845 |
+
"126185": {
|
846 |
+
"content": "<|reserved_token_101|>",
|
847 |
+
"lstrip": false,
|
848 |
+
"normalized": false,
|
849 |
+
"rstrip": false,
|
850 |
+
"single_word": false,
|
851 |
+
"special": true
|
852 |
+
},
|
853 |
+
"126186": {
|
854 |
+
"content": "<|reserved_token_102|>",
|
855 |
+
"lstrip": false,
|
856 |
+
"normalized": false,
|
857 |
+
"rstrip": false,
|
858 |
+
"single_word": false,
|
859 |
+
"special": true
|
860 |
+
},
|
861 |
+
"126187": {
|
862 |
+
"content": "<|reserved_token_103|>",
|
863 |
+
"lstrip": false,
|
864 |
+
"normalized": false,
|
865 |
+
"rstrip": false,
|
866 |
+
"single_word": false,
|
867 |
+
"special": true
|
868 |
+
},
|
869 |
+
"126188": {
|
870 |
+
"content": "<|reserved_token_104|>",
|
871 |
+
"lstrip": false,
|
872 |
+
"normalized": false,
|
873 |
+
"rstrip": false,
|
874 |
+
"single_word": false,
|
875 |
+
"special": true
|
876 |
+
},
|
877 |
+
"126189": {
|
878 |
+
"content": "<|reserved_token_105|>",
|
879 |
+
"lstrip": false,
|
880 |
+
"normalized": false,
|
881 |
+
"rstrip": false,
|
882 |
+
"single_word": false,
|
883 |
+
"special": true
|
884 |
+
},
|
885 |
+
"126190": {
|
886 |
+
"content": "<|reserved_token_106|>",
|
887 |
+
"lstrip": false,
|
888 |
+
"normalized": false,
|
889 |
+
"rstrip": false,
|
890 |
+
"single_word": false,
|
891 |
+
"special": true
|
892 |
+
},
|
893 |
+
"126191": {
|
894 |
+
"content": "<|reserved_token_107|>",
|
895 |
+
"lstrip": false,
|
896 |
+
"normalized": false,
|
897 |
+
"rstrip": false,
|
898 |
+
"single_word": false,
|
899 |
+
"special": true
|
900 |
+
},
|
901 |
+
"126192": {
|
902 |
+
"content": "<|reserved_token_108|>",
|
903 |
+
"lstrip": false,
|
904 |
+
"normalized": false,
|
905 |
+
"rstrip": false,
|
906 |
+
"single_word": false,
|
907 |
+
"special": true
|
908 |
+
},
|
909 |
+
"126193": {
|
910 |
+
"content": "<|reserved_token_109|>",
|
911 |
+
"lstrip": false,
|
912 |
+
"normalized": false,
|
913 |
+
"rstrip": false,
|
914 |
+
"single_word": false,
|
915 |
+
"special": true
|
916 |
+
},
|
917 |
+
"126194": {
|
918 |
+
"content": "<|reserved_token_110|>",
|
919 |
+
"lstrip": false,
|
920 |
+
"normalized": false,
|
921 |
+
"rstrip": false,
|
922 |
+
"single_word": false,
|
923 |
+
"special": true
|
924 |
+
},
|
925 |
+
"126195": {
|
926 |
+
"content": "<|reserved_token_111|>",
|
927 |
+
"lstrip": false,
|
928 |
+
"normalized": false,
|
929 |
+
"rstrip": false,
|
930 |
+
"single_word": false,
|
931 |
+
"special": true
|
932 |
+
},
|
933 |
+
"126196": {
|
934 |
+
"content": "<|reserved_token_112|>",
|
935 |
+
"lstrip": false,
|
936 |
+
"normalized": false,
|
937 |
+
"rstrip": false,
|
938 |
+
"single_word": false,
|
939 |
+
"special": true
|
940 |
+
},
|
941 |
+
"126197": {
|
942 |
+
"content": "<|reserved_token_113|>",
|
943 |
+
"lstrip": false,
|
944 |
+
"normalized": false,
|
945 |
+
"rstrip": false,
|
946 |
+
"single_word": false,
|
947 |
+
"special": true
|
948 |
+
},
|
949 |
+
"126198": {
|
950 |
+
"content": "<|reserved_token_114|>",
|
951 |
+
"lstrip": false,
|
952 |
+
"normalized": false,
|
953 |
+
"rstrip": false,
|
954 |
+
"single_word": false,
|
955 |
+
"special": true
|
956 |
+
},
|
957 |
+
"126199": {
|
958 |
+
"content": "<|reserved_token_115|>",
|
959 |
+
"lstrip": false,
|
960 |
+
"normalized": false,
|
961 |
+
"rstrip": false,
|
962 |
+
"single_word": false,
|
963 |
+
"special": true
|
964 |
+
},
|
965 |
+
"126200": {
|
966 |
+
"content": "<|reserved_token_116|>",
|
967 |
+
"lstrip": false,
|
968 |
+
"normalized": false,
|
969 |
+
"rstrip": false,
|
970 |
+
"single_word": false,
|
971 |
+
"special": true
|
972 |
+
},
|
973 |
+
"126201": {
|
974 |
+
"content": "<|reserved_token_117|>",
|
975 |
+
"lstrip": false,
|
976 |
+
"normalized": false,
|
977 |
+
"rstrip": false,
|
978 |
+
"single_word": false,
|
979 |
+
"special": true
|
980 |
+
},
|
981 |
+
"126202": {
|
982 |
+
"content": "<|reserved_token_118|>",
|
983 |
+
"lstrip": false,
|
984 |
+
"normalized": false,
|
985 |
+
"rstrip": false,
|
986 |
+
"single_word": false,
|
987 |
+
"special": true
|
988 |
+
},
|
989 |
+
"126203": {
|
990 |
+
"content": "<|reserved_token_119|>",
|
991 |
+
"lstrip": false,
|
992 |
+
"normalized": false,
|
993 |
+
"rstrip": false,
|
994 |
+
"single_word": false,
|
995 |
+
"special": true
|
996 |
+
},
|
997 |
+
"126204": {
|
998 |
+
"content": "<|reserved_token_120|>",
|
999 |
+
"lstrip": false,
|
1000 |
+
"normalized": false,
|
1001 |
+
"rstrip": false,
|
1002 |
+
"single_word": false,
|
1003 |
+
"special": true
|
1004 |
+
},
|
1005 |
+
"126205": {
|
1006 |
+
"content": "<|reserved_token_121|>",
|
1007 |
+
"lstrip": false,
|
1008 |
+
"normalized": false,
|
1009 |
+
"rstrip": false,
|
1010 |
+
"single_word": false,
|
1011 |
+
"special": true
|
1012 |
+
},
|
1013 |
+
"126206": {
|
1014 |
+
"content": "<|reserved_token_122|>",
|
1015 |
+
"lstrip": false,
|
1016 |
+
"normalized": false,
|
1017 |
+
"rstrip": false,
|
1018 |
+
"single_word": false,
|
1019 |
+
"special": true
|
1020 |
+
},
|
1021 |
+
"126207": {
|
1022 |
+
"content": "<|reserved_token_123|>",
|
1023 |
+
"lstrip": false,
|
1024 |
+
"normalized": false,
|
1025 |
+
"rstrip": false,
|
1026 |
+
"single_word": false,
|
1027 |
+
"special": true
|
1028 |
+
},
|
1029 |
+
"126208": {
|
1030 |
+
"content": "<|reserved_token_124|>",
|
1031 |
+
"lstrip": false,
|
1032 |
+
"normalized": false,
|
1033 |
+
"rstrip": false,
|
1034 |
+
"single_word": false,
|
1035 |
+
"special": true
|
1036 |
+
},
|
1037 |
+
"126209": {
|
1038 |
+
"content": "<|reserved_token_125|>",
|
1039 |
+
"lstrip": false,
|
1040 |
+
"normalized": false,
|
1041 |
+
"rstrip": false,
|
1042 |
+
"single_word": false,
|
1043 |
+
"special": true
|
1044 |
+
},
|
1045 |
+
"126210": {
|
1046 |
+
"content": "<|reserved_token_126|>",
|
1047 |
+
"lstrip": false,
|
1048 |
+
"normalized": false,
|
1049 |
+
"rstrip": false,
|
1050 |
+
"single_word": false,
|
1051 |
+
"special": true
|
1052 |
+
},
|
1053 |
+
"126211": {
|
1054 |
+
"content": "<|reserved_token_127|>",
|
1055 |
+
"lstrip": false,
|
1056 |
+
"normalized": false,
|
1057 |
+
"rstrip": false,
|
1058 |
+
"single_word": false,
|
1059 |
+
"special": true
|
1060 |
+
},
|
1061 |
+
"126212": {
|
1062 |
+
"content": "<|reserved_token_128|>",
|
1063 |
+
"lstrip": false,
|
1064 |
+
"normalized": false,
|
1065 |
+
"rstrip": false,
|
1066 |
+
"single_word": false,
|
1067 |
+
"special": true
|
1068 |
+
},
|
1069 |
+
"126213": {
|
1070 |
+
"content": "<|reserved_token_129|>",
|
1071 |
+
"lstrip": false,
|
1072 |
+
"normalized": false,
|
1073 |
+
"rstrip": false,
|
1074 |
+
"single_word": false,
|
1075 |
+
"special": true
|
1076 |
+
},
|
1077 |
+
"126214": {
|
1078 |
+
"content": "<|reserved_token_130|>",
|
1079 |
+
"lstrip": false,
|
1080 |
+
"normalized": false,
|
1081 |
+
"rstrip": false,
|
1082 |
+
"single_word": false,
|
1083 |
+
"special": true
|
1084 |
+
},
|
1085 |
+
"126215": {
|
1086 |
+
"content": "<|reserved_token_131|>",
|
1087 |
+
"lstrip": false,
|
1088 |
+
"normalized": false,
|
1089 |
+
"rstrip": false,
|
1090 |
+
"single_word": false,
|
1091 |
+
"special": true
|
1092 |
+
},
|
1093 |
+
"126216": {
|
1094 |
+
"content": "<|reserved_token_132|>",
|
1095 |
+
"lstrip": false,
|
1096 |
+
"normalized": false,
|
1097 |
+
"rstrip": false,
|
1098 |
+
"single_word": false,
|
1099 |
+
"special": true
|
1100 |
+
},
|
1101 |
+
"126217": {
|
1102 |
+
"content": "<|reserved_token_133|>",
|
1103 |
+
"lstrip": false,
|
1104 |
+
"normalized": false,
|
1105 |
+
"rstrip": false,
|
1106 |
+
"single_word": false,
|
1107 |
+
"special": true
|
1108 |
+
},
|
1109 |
+
"126218": {
|
1110 |
+
"content": "<|reserved_token_134|>",
|
1111 |
+
"lstrip": false,
|
1112 |
+
"normalized": false,
|
1113 |
+
"rstrip": false,
|
1114 |
+
"single_word": false,
|
1115 |
+
"special": true
|
1116 |
+
},
|
1117 |
+
"126219": {
|
1118 |
+
"content": "<|reserved_token_135|>",
|
1119 |
+
"lstrip": false,
|
1120 |
+
"normalized": false,
|
1121 |
+
"rstrip": false,
|
1122 |
+
"single_word": false,
|
1123 |
+
"special": true
|
1124 |
+
},
|
1125 |
+
"126220": {
|
1126 |
+
"content": "<|reserved_token_136|>",
|
1127 |
+
"lstrip": false,
|
1128 |
+
"normalized": false,
|
1129 |
+
"rstrip": false,
|
1130 |
+
"single_word": false,
|
1131 |
+
"special": true
|
1132 |
+
},
|
1133 |
+
"126221": {
|
1134 |
+
"content": "<|reserved_token_137|>",
|
1135 |
+
"lstrip": false,
|
1136 |
+
"normalized": false,
|
1137 |
+
"rstrip": false,
|
1138 |
+
"single_word": false,
|
1139 |
+
"special": true
|
1140 |
+
},
|
1141 |
+
"126222": {
|
1142 |
+
"content": "<|reserved_token_138|>",
|
1143 |
+
"lstrip": false,
|
1144 |
+
"normalized": false,
|
1145 |
+
"rstrip": false,
|
1146 |
+
"single_word": false,
|
1147 |
+
"special": true
|
1148 |
+
},
|
1149 |
+
"126223": {
|
1150 |
+
"content": "<|reserved_token_139|>",
|
1151 |
+
"lstrip": false,
|
1152 |
+
"normalized": false,
|
1153 |
+
"rstrip": false,
|
1154 |
+
"single_word": false,
|
1155 |
+
"special": true
|
1156 |
+
},
|
1157 |
+
"126224": {
|
1158 |
+
"content": "<|reserved_token_140|>",
|
1159 |
+
"lstrip": false,
|
1160 |
+
"normalized": false,
|
1161 |
+
"rstrip": false,
|
1162 |
+
"single_word": false,
|
1163 |
+
"special": true
|
1164 |
+
},
|
1165 |
+
"126225": {
|
1166 |
+
"content": "<|reserved_token_141|>",
|
1167 |
+
"lstrip": false,
|
1168 |
+
"normalized": false,
|
1169 |
+
"rstrip": false,
|
1170 |
+
"single_word": false,
|
1171 |
+
"special": true
|
1172 |
+
},
|
1173 |
+
"126226": {
|
1174 |
+
"content": "<|reserved_token_142|>",
|
1175 |
+
"lstrip": false,
|
1176 |
+
"normalized": false,
|
1177 |
+
"rstrip": false,
|
1178 |
+
"single_word": false,
|
1179 |
+
"special": true
|
1180 |
+
},
|
1181 |
+
"126227": {
|
1182 |
+
"content": "<|reserved_token_143|>",
|
1183 |
+
"lstrip": false,
|
1184 |
+
"normalized": false,
|
1185 |
+
"rstrip": false,
|
1186 |
+
"single_word": false,
|
1187 |
+
"special": true
|
1188 |
+
},
|
1189 |
+
"126228": {
|
1190 |
+
"content": "<|reserved_token_144|>",
|
1191 |
+
"lstrip": false,
|
1192 |
+
"normalized": false,
|
1193 |
+
"rstrip": false,
|
1194 |
+
"single_word": false,
|
1195 |
+
"special": true
|
1196 |
+
},
|
1197 |
+
"126229": {
|
1198 |
+
"content": "<|reserved_token_145|>",
|
1199 |
+
"lstrip": false,
|
1200 |
+
"normalized": false,
|
1201 |
+
"rstrip": false,
|
1202 |
+
"single_word": false,
|
1203 |
+
"special": true
|
1204 |
+
},
|
1205 |
+
"126230": {
|
1206 |
+
"content": "<|reserved_token_146|>",
|
1207 |
+
"lstrip": false,
|
1208 |
+
"normalized": false,
|
1209 |
+
"rstrip": false,
|
1210 |
+
"single_word": false,
|
1211 |
+
"special": true
|
1212 |
+
},
|
1213 |
+
"126231": {
|
1214 |
+
"content": "<|reserved_token_147|>",
|
1215 |
+
"lstrip": false,
|
1216 |
+
"normalized": false,
|
1217 |
+
"rstrip": false,
|
1218 |
+
"single_word": false,
|
1219 |
+
"special": true
|
1220 |
+
},
|
1221 |
+
"126232": {
|
1222 |
+
"content": "<|reserved_token_148|>",
|
1223 |
+
"lstrip": false,
|
1224 |
+
"normalized": false,
|
1225 |
+
"rstrip": false,
|
1226 |
+
"single_word": false,
|
1227 |
+
"special": true
|
1228 |
+
},
|
1229 |
+
"126233": {
|
1230 |
+
"content": "<|reserved_token_149|>",
|
1231 |
+
"lstrip": false,
|
1232 |
+
"normalized": false,
|
1233 |
+
"rstrip": false,
|
1234 |
+
"single_word": false,
|
1235 |
+
"special": true
|
1236 |
+
},
|
1237 |
+
"126234": {
|
1238 |
+
"content": "<|reserved_token_150|>",
|
1239 |
+
"lstrip": false,
|
1240 |
+
"normalized": false,
|
1241 |
+
"rstrip": false,
|
1242 |
+
"single_word": false,
|
1243 |
+
"special": true
|
1244 |
+
},
|
1245 |
+
"126235": {
|
1246 |
+
"content": "<|reserved_token_151|>",
|
1247 |
+
"lstrip": false,
|
1248 |
+
"normalized": false,
|
1249 |
+
"rstrip": false,
|
1250 |
+
"single_word": false,
|
1251 |
+
"special": true
|
1252 |
+
},
|
1253 |
+
"126236": {
|
1254 |
+
"content": "<|reserved_token_152|>",
|
1255 |
+
"lstrip": false,
|
1256 |
+
"normalized": false,
|
1257 |
+
"rstrip": false,
|
1258 |
+
"single_word": false,
|
1259 |
+
"special": true
|
1260 |
+
},
|
1261 |
+
"126237": {
|
1262 |
+
"content": "<|reserved_token_153|>",
|
1263 |
+
"lstrip": false,
|
1264 |
+
"normalized": false,
|
1265 |
+
"rstrip": false,
|
1266 |
+
"single_word": false,
|
1267 |
+
"special": true
|
1268 |
+
},
|
1269 |
+
"126238": {
|
1270 |
+
"content": "<|reserved_token_154|>",
|
1271 |
+
"lstrip": false,
|
1272 |
+
"normalized": false,
|
1273 |
+
"rstrip": false,
|
1274 |
+
"single_word": false,
|
1275 |
+
"special": true
|
1276 |
+
},
|
1277 |
+
"126239": {
|
1278 |
+
"content": "<|reserved_token_155|>",
|
1279 |
+
"lstrip": false,
|
1280 |
+
"normalized": false,
|
1281 |
+
"rstrip": false,
|
1282 |
+
"single_word": false,
|
1283 |
+
"special": true
|
1284 |
+
},
|
1285 |
+
"126240": {
|
1286 |
+
"content": "<|reserved_token_156|>",
|
1287 |
+
"lstrip": false,
|
1288 |
+
"normalized": false,
|
1289 |
+
"rstrip": false,
|
1290 |
+
"single_word": false,
|
1291 |
+
"special": true
|
1292 |
+
},
|
1293 |
+
"126241": {
|
1294 |
+
"content": "<|reserved_token_157|>",
|
1295 |
+
"lstrip": false,
|
1296 |
+
"normalized": false,
|
1297 |
+
"rstrip": false,
|
1298 |
+
"single_word": false,
|
1299 |
+
"special": true
|
1300 |
+
},
|
1301 |
+
"126242": {
|
1302 |
+
"content": "<|reserved_token_158|>",
|
1303 |
+
"lstrip": false,
|
1304 |
+
"normalized": false,
|
1305 |
+
"rstrip": false,
|
1306 |
+
"single_word": false,
|
1307 |
+
"special": true
|
1308 |
+
},
|
1309 |
+
"126243": {
|
1310 |
+
"content": "<|reserved_token_159|>",
|
1311 |
+
"lstrip": false,
|
1312 |
+
"normalized": false,
|
1313 |
+
"rstrip": false,
|
1314 |
+
"single_word": false,
|
1315 |
+
"special": true
|
1316 |
+
},
|
1317 |
+
"126244": {
|
1318 |
+
"content": "<|reserved_token_160|>",
|
1319 |
+
"lstrip": false,
|
1320 |
+
"normalized": false,
|
1321 |
+
"rstrip": false,
|
1322 |
+
"single_word": false,
|
1323 |
+
"special": true
|
1324 |
+
},
|
1325 |
+
"126245": {
|
1326 |
+
"content": "<|reserved_token_161|>",
|
1327 |
+
"lstrip": false,
|
1328 |
+
"normalized": false,
|
1329 |
+
"rstrip": false,
|
1330 |
+
"single_word": false,
|
1331 |
+
"special": true
|
1332 |
+
},
|
1333 |
+
"126246": {
|
1334 |
+
"content": "<|reserved_token_162|>",
|
1335 |
+
"lstrip": false,
|
1336 |
+
"normalized": false,
|
1337 |
+
"rstrip": false,
|
1338 |
+
"single_word": false,
|
1339 |
+
"special": true
|
1340 |
+
},
|
1341 |
+
"126247": {
|
1342 |
+
"content": "<|reserved_token_163|>",
|
1343 |
+
"lstrip": false,
|
1344 |
+
"normalized": false,
|
1345 |
+
"rstrip": false,
|
1346 |
+
"single_word": false,
|
1347 |
+
"special": true
|
1348 |
+
},
|
1349 |
+
"126248": {
|
1350 |
+
"content": "<|reserved_token_164|>",
|
1351 |
+
"lstrip": false,
|
1352 |
+
"normalized": false,
|
1353 |
+
"rstrip": false,
|
1354 |
+
"single_word": false,
|
1355 |
+
"special": true
|
1356 |
+
},
|
1357 |
+
"126249": {
|
1358 |
+
"content": "<|reserved_token_165|>",
|
1359 |
+
"lstrip": false,
|
1360 |
+
"normalized": false,
|
1361 |
+
"rstrip": false,
|
1362 |
+
"single_word": false,
|
1363 |
+
"special": true
|
1364 |
+
},
|
1365 |
+
"126250": {
|
1366 |
+
"content": "<|reserved_token_166|>",
|
1367 |
+
"lstrip": false,
|
1368 |
+
"normalized": false,
|
1369 |
+
"rstrip": false,
|
1370 |
+
"single_word": false,
|
1371 |
+
"special": true
|
1372 |
+
},
|
1373 |
+
"126251": {
|
1374 |
+
"content": "<|reserved_token_167|>",
|
1375 |
+
"lstrip": false,
|
1376 |
+
"normalized": false,
|
1377 |
+
"rstrip": false,
|
1378 |
+
"single_word": false,
|
1379 |
+
"special": true
|
1380 |
+
},
|
1381 |
+
"126252": {
|
1382 |
+
"content": "<|reserved_token_168|>",
|
1383 |
+
"lstrip": false,
|
1384 |
+
"normalized": false,
|
1385 |
+
"rstrip": false,
|
1386 |
+
"single_word": false,
|
1387 |
+
"special": true
|
1388 |
+
},
|
1389 |
+
"126253": {
|
1390 |
+
"content": "<|reserved_token_169|>",
|
1391 |
+
"lstrip": false,
|
1392 |
+
"normalized": false,
|
1393 |
+
"rstrip": false,
|
1394 |
+
"single_word": false,
|
1395 |
+
"special": true
|
1396 |
+
},
|
1397 |
+
"126254": {
|
1398 |
+
"content": "<|reserved_token_170|>",
|
1399 |
+
"lstrip": false,
|
1400 |
+
"normalized": false,
|
1401 |
+
"rstrip": false,
|
1402 |
+
"single_word": false,
|
1403 |
+
"special": true
|
1404 |
+
},
|
1405 |
+
"126255": {
|
1406 |
+
"content": "<|reserved_token_171|>",
|
1407 |
+
"lstrip": false,
|
1408 |
+
"normalized": false,
|
1409 |
+
"rstrip": false,
|
1410 |
+
"single_word": false,
|
1411 |
+
"special": true
|
1412 |
+
},
|
1413 |
+
"126256": {
|
1414 |
+
"content": "<|reserved_token_172|>",
|
1415 |
+
"lstrip": false,
|
1416 |
+
"normalized": false,
|
1417 |
+
"rstrip": false,
|
1418 |
+
"single_word": false,
|
1419 |
+
"special": true
|
1420 |
+
},
|
1421 |
+
"126257": {
|
1422 |
+
"content": "<|reserved_token_173|>",
|
1423 |
+
"lstrip": false,
|
1424 |
+
"normalized": false,
|
1425 |
+
"rstrip": false,
|
1426 |
+
"single_word": false,
|
1427 |
+
"special": true
|
1428 |
+
},
|
1429 |
+
"126258": {
|
1430 |
+
"content": "<|reserved_token_174|>",
|
1431 |
+
"lstrip": false,
|
1432 |
+
"normalized": false,
|
1433 |
+
"rstrip": false,
|
1434 |
+
"single_word": false,
|
1435 |
+
"special": true
|
1436 |
+
},
|
1437 |
+
"126259": {
|
1438 |
+
"content": "<|reserved_token_175|>",
|
1439 |
+
"lstrip": false,
|
1440 |
+
"normalized": false,
|
1441 |
+
"rstrip": false,
|
1442 |
+
"single_word": false,
|
1443 |
+
"special": true
|
1444 |
+
},
|
1445 |
+
"126260": {
|
1446 |
+
"content": "<|reserved_token_176|>",
|
1447 |
+
"lstrip": false,
|
1448 |
+
"normalized": false,
|
1449 |
+
"rstrip": false,
|
1450 |
+
"single_word": false,
|
1451 |
+
"special": true
|
1452 |
+
},
|
1453 |
+
"126261": {
|
1454 |
+
"content": "<|reserved_token_177|>",
|
1455 |
+
"lstrip": false,
|
1456 |
+
"normalized": false,
|
1457 |
+
"rstrip": false,
|
1458 |
+
"single_word": false,
|
1459 |
+
"special": true
|
1460 |
+
},
|
1461 |
+
"126262": {
|
1462 |
+
"content": "<|reserved_token_178|>",
|
1463 |
+
"lstrip": false,
|
1464 |
+
"normalized": false,
|
1465 |
+
"rstrip": false,
|
1466 |
+
"single_word": false,
|
1467 |
+
"special": true
|
1468 |
+
},
|
1469 |
+
"126263": {
|
1470 |
+
"content": "<|reserved_token_179|>",
|
1471 |
+
"lstrip": false,
|
1472 |
+
"normalized": false,
|
1473 |
+
"rstrip": false,
|
1474 |
+
"single_word": false,
|
1475 |
+
"special": true
|
1476 |
+
},
|
1477 |
+
"126264": {
|
1478 |
+
"content": "<|reserved_token_180|>",
|
1479 |
+
"lstrip": false,
|
1480 |
+
"normalized": false,
|
1481 |
+
"rstrip": false,
|
1482 |
+
"single_word": false,
|
1483 |
+
"special": true
|
1484 |
+
},
|
1485 |
+
"126265": {
|
1486 |
+
"content": "<|reserved_token_181|>",
|
1487 |
+
"lstrip": false,
|
1488 |
+
"normalized": false,
|
1489 |
+
"rstrip": false,
|
1490 |
+
"single_word": false,
|
1491 |
+
"special": true
|
1492 |
+
},
|
1493 |
+
"126266": {
|
1494 |
+
"content": "<|reserved_token_182|>",
|
1495 |
+
"lstrip": false,
|
1496 |
+
"normalized": false,
|
1497 |
+
"rstrip": false,
|
1498 |
+
"single_word": false,
|
1499 |
+
"special": true
|
1500 |
+
},
|
1501 |
+
"126267": {
|
1502 |
+
"content": "<|reserved_token_183|>",
|
1503 |
+
"lstrip": false,
|
1504 |
+
"normalized": false,
|
1505 |
+
"rstrip": false,
|
1506 |
+
"single_word": false,
|
1507 |
+
"special": true
|
1508 |
+
},
|
1509 |
+
"126268": {
|
1510 |
+
"content": "<|reserved_token_184|>",
|
1511 |
+
"lstrip": false,
|
1512 |
+
"normalized": false,
|
1513 |
+
"rstrip": false,
|
1514 |
+
"single_word": false,
|
1515 |
+
"special": true
|
1516 |
+
},
|
1517 |
+
"126269": {
|
1518 |
+
"content": "<|reserved_token_185|>",
|
1519 |
+
"lstrip": false,
|
1520 |
+
"normalized": false,
|
1521 |
+
"rstrip": false,
|
1522 |
+
"single_word": false,
|
1523 |
+
"special": true
|
1524 |
+
},
|
1525 |
+
"126270": {
|
1526 |
+
"content": "<|reserved_token_186|>",
|
1527 |
+
"lstrip": false,
|
1528 |
+
"normalized": false,
|
1529 |
+
"rstrip": false,
|
1530 |
+
"single_word": false,
|
1531 |
+
"special": true
|
1532 |
+
},
|
1533 |
+
"126271": {
|
1534 |
+
"content": "<|reserved_token_187|>",
|
1535 |
+
"lstrip": false,
|
1536 |
+
"normalized": false,
|
1537 |
+
"rstrip": false,
|
1538 |
+
"single_word": false,
|
1539 |
+
"special": true
|
1540 |
+
},
|
1541 |
+
"126272": {
|
1542 |
+
"content": "<|reserved_token_188|>",
|
1543 |
+
"lstrip": false,
|
1544 |
+
"normalized": false,
|
1545 |
+
"rstrip": false,
|
1546 |
+
"single_word": false,
|
1547 |
+
"special": true
|
1548 |
+
},
|
1549 |
+
"126273": {
|
1550 |
+
"content": "<|reserved_token_189|>",
|
1551 |
+
"lstrip": false,
|
1552 |
+
"normalized": false,
|
1553 |
+
"rstrip": false,
|
1554 |
+
"single_word": false,
|
1555 |
+
"special": true
|
1556 |
+
},
|
1557 |
+
"126274": {
|
1558 |
+
"content": "<|reserved_token_190|>",
|
1559 |
+
"lstrip": false,
|
1560 |
+
"normalized": false,
|
1561 |
+
"rstrip": false,
|
1562 |
+
"single_word": false,
|
1563 |
+
"special": true
|
1564 |
+
},
|
1565 |
+
"126275": {
|
1566 |
+
"content": "<|reserved_token_191|>",
|
1567 |
+
"lstrip": false,
|
1568 |
+
"normalized": false,
|
1569 |
+
"rstrip": false,
|
1570 |
+
"single_word": false,
|
1571 |
+
"special": true
|
1572 |
+
},
|
1573 |
+
"126276": {
|
1574 |
+
"content": "<|reserved_token_192|>",
|
1575 |
+
"lstrip": false,
|
1576 |
+
"normalized": false,
|
1577 |
+
"rstrip": false,
|
1578 |
+
"single_word": false,
|
1579 |
+
"special": true
|
1580 |
+
},
|
1581 |
+
"126277": {
|
1582 |
+
"content": "<|reserved_token_193|>",
|
1583 |
+
"lstrip": false,
|
1584 |
+
"normalized": false,
|
1585 |
+
"rstrip": false,
|
1586 |
+
"single_word": false,
|
1587 |
+
"special": true
|
1588 |
+
},
|
1589 |
+
"126278": {
|
1590 |
+
"content": "<|reserved_token_194|>",
|
1591 |
+
"lstrip": false,
|
1592 |
+
"normalized": false,
|
1593 |
+
"rstrip": false,
|
1594 |
+
"single_word": false,
|
1595 |
+
"special": true
|
1596 |
+
},
|
1597 |
+
"126279": {
|
1598 |
+
"content": "<|reserved_token_195|>",
|
1599 |
+
"lstrip": false,
|
1600 |
+
"normalized": false,
|
1601 |
+
"rstrip": false,
|
1602 |
+
"single_word": false,
|
1603 |
+
"special": true
|
1604 |
+
},
|
1605 |
+
"126280": {
|
1606 |
+
"content": "<|reserved_token_196|>",
|
1607 |
+
"lstrip": false,
|
1608 |
+
"normalized": false,
|
1609 |
+
"rstrip": false,
|
1610 |
+
"single_word": false,
|
1611 |
+
"special": true
|
1612 |
+
},
|
1613 |
+
"126281": {
|
1614 |
+
"content": "<|reserved_token_197|>",
|
1615 |
+
"lstrip": false,
|
1616 |
+
"normalized": false,
|
1617 |
+
"rstrip": false,
|
1618 |
+
"single_word": false,
|
1619 |
+
"special": true
|
1620 |
+
},
|
1621 |
+
"126282": {
|
1622 |
+
"content": "<|reserved_token_198|>",
|
1623 |
+
"lstrip": false,
|
1624 |
+
"normalized": false,
|
1625 |
+
"rstrip": false,
|
1626 |
+
"single_word": false,
|
1627 |
+
"special": true
|
1628 |
+
},
|
1629 |
+
"126283": {
|
1630 |
+
"content": "<|reserved_token_199|>",
|
1631 |
+
"lstrip": false,
|
1632 |
+
"normalized": false,
|
1633 |
+
"rstrip": false,
|
1634 |
+
"single_word": false,
|
1635 |
+
"special": true
|
1636 |
+
},
|
1637 |
+
"126284": {
|
1638 |
+
"content": "<|reserved_token_200|>",
|
1639 |
+
"lstrip": false,
|
1640 |
+
"normalized": false,
|
1641 |
+
"rstrip": false,
|
1642 |
+
"single_word": false,
|
1643 |
+
"special": true
|
1644 |
+
},
|
1645 |
+
"126285": {
|
1646 |
+
"content": "<|reserved_token_201|>",
|
1647 |
+
"lstrip": false,
|
1648 |
+
"normalized": false,
|
1649 |
+
"rstrip": false,
|
1650 |
+
"single_word": false,
|
1651 |
+
"special": true
|
1652 |
+
},
|
1653 |
+
"126286": {
|
1654 |
+
"content": "<|reserved_token_202|>",
|
1655 |
+
"lstrip": false,
|
1656 |
+
"normalized": false,
|
1657 |
+
"rstrip": false,
|
1658 |
+
"single_word": false,
|
1659 |
+
"special": true
|
1660 |
+
},
|
1661 |
+
"126287": {
|
1662 |
+
"content": "<|reserved_token_203|>",
|
1663 |
+
"lstrip": false,
|
1664 |
+
"normalized": false,
|
1665 |
+
"rstrip": false,
|
1666 |
+
"single_word": false,
|
1667 |
+
"special": true
|
1668 |
+
},
|
1669 |
+
"126288": {
|
1670 |
+
"content": "<|reserved_token_204|>",
|
1671 |
+
"lstrip": false,
|
1672 |
+
"normalized": false,
|
1673 |
+
"rstrip": false,
|
1674 |
+
"single_word": false,
|
1675 |
+
"special": true
|
1676 |
+
},
|
1677 |
+
"126289": {
|
1678 |
+
"content": "<|reserved_token_205|>",
|
1679 |
+
"lstrip": false,
|
1680 |
+
"normalized": false,
|
1681 |
+
"rstrip": false,
|
1682 |
+
"single_word": false,
|
1683 |
+
"special": true
|
1684 |
+
},
|
1685 |
+
"126290": {
|
1686 |
+
"content": "<|reserved_token_206|>",
|
1687 |
+
"lstrip": false,
|
1688 |
+
"normalized": false,
|
1689 |
+
"rstrip": false,
|
1690 |
+
"single_word": false,
|
1691 |
+
"special": true
|
1692 |
+
},
|
1693 |
+
"126291": {
|
1694 |
+
"content": "<|reserved_token_207|>",
|
1695 |
+
"lstrip": false,
|
1696 |
+
"normalized": false,
|
1697 |
+
"rstrip": false,
|
1698 |
+
"single_word": false,
|
1699 |
+
"special": true
|
1700 |
+
},
|
1701 |
+
"126292": {
|
1702 |
+
"content": "<|reserved_token_208|>",
|
1703 |
+
"lstrip": false,
|
1704 |
+
"normalized": false,
|
1705 |
+
"rstrip": false,
|
1706 |
+
"single_word": false,
|
1707 |
+
"special": true
|
1708 |
+
},
|
1709 |
+
"126293": {
|
1710 |
+
"content": "<|reserved_token_209|>",
|
1711 |
+
"lstrip": false,
|
1712 |
+
"normalized": false,
|
1713 |
+
"rstrip": false,
|
1714 |
+
"single_word": false,
|
1715 |
+
"special": true
|
1716 |
+
},
|
1717 |
+
"126294": {
|
1718 |
+
"content": "<|reserved_token_210|>",
|
1719 |
+
"lstrip": false,
|
1720 |
+
"normalized": false,
|
1721 |
+
"rstrip": false,
|
1722 |
+
"single_word": false,
|
1723 |
+
"special": true
|
1724 |
+
},
|
1725 |
+
"126295": {
|
1726 |
+
"content": "<|reserved_token_211|>",
|
1727 |
+
"lstrip": false,
|
1728 |
+
"normalized": false,
|
1729 |
+
"rstrip": false,
|
1730 |
+
"single_word": false,
|
1731 |
+
"special": true
|
1732 |
+
},
|
1733 |
+
"126296": {
|
1734 |
+
"content": "<|reserved_token_212|>",
|
1735 |
+
"lstrip": false,
|
1736 |
+
"normalized": false,
|
1737 |
+
"rstrip": false,
|
1738 |
+
"single_word": false,
|
1739 |
+
"special": true
|
1740 |
+
},
|
1741 |
+
"126297": {
|
1742 |
+
"content": "<|reserved_token_213|>",
|
1743 |
+
"lstrip": false,
|
1744 |
+
"normalized": false,
|
1745 |
+
"rstrip": false,
|
1746 |
+
"single_word": false,
|
1747 |
+
"special": true
|
1748 |
+
},
|
1749 |
+
"126298": {
|
1750 |
+
"content": "<|reserved_token_214|>",
|
1751 |
+
"lstrip": false,
|
1752 |
+
"normalized": false,
|
1753 |
+
"rstrip": false,
|
1754 |
+
"single_word": false,
|
1755 |
+
"special": true
|
1756 |
+
},
|
1757 |
+
"126299": {
|
1758 |
+
"content": "<|reserved_token_215|>",
|
1759 |
+
"lstrip": false,
|
1760 |
+
"normalized": false,
|
1761 |
+
"rstrip": false,
|
1762 |
+
"single_word": false,
|
1763 |
+
"special": true
|
1764 |
+
},
|
1765 |
+
"126300": {
|
1766 |
+
"content": "<|reserved_token_216|>",
|
1767 |
+
"lstrip": false,
|
1768 |
+
"normalized": false,
|
1769 |
+
"rstrip": false,
|
1770 |
+
"single_word": false,
|
1771 |
+
"special": true
|
1772 |
+
},
|
1773 |
+
"126301": {
|
1774 |
+
"content": "<|reserved_token_217|>",
|
1775 |
+
"lstrip": false,
|
1776 |
+
"normalized": false,
|
1777 |
+
"rstrip": false,
|
1778 |
+
"single_word": false,
|
1779 |
+
"special": true
|
1780 |
+
},
|
1781 |
+
"126302": {
|
1782 |
+
"content": "<|reserved_token_218|>",
|
1783 |
+
"lstrip": false,
|
1784 |
+
"normalized": false,
|
1785 |
+
"rstrip": false,
|
1786 |
+
"single_word": false,
|
1787 |
+
"special": true
|
1788 |
+
},
|
1789 |
+
"126303": {
|
1790 |
+
"content": "<|reserved_token_219|>",
|
1791 |
+
"lstrip": false,
|
1792 |
+
"normalized": false,
|
1793 |
+
"rstrip": false,
|
1794 |
+
"single_word": false,
|
1795 |
+
"special": true
|
1796 |
+
},
|
1797 |
+
"126304": {
|
1798 |
+
"content": "<|reserved_token_220|>",
|
1799 |
+
"lstrip": false,
|
1800 |
+
"normalized": false,
|
1801 |
+
"rstrip": false,
|
1802 |
+
"single_word": false,
|
1803 |
+
"special": true
|
1804 |
+
},
|
1805 |
+
"126305": {
|
1806 |
+
"content": "<|reserved_token_221|>",
|
1807 |
+
"lstrip": false,
|
1808 |
+
"normalized": false,
|
1809 |
+
"rstrip": false,
|
1810 |
+
"single_word": false,
|
1811 |
+
"special": true
|
1812 |
+
},
|
1813 |
+
"126306": {
|
1814 |
+
"content": "<|reserved_token_222|>",
|
1815 |
+
"lstrip": false,
|
1816 |
+
"normalized": false,
|
1817 |
+
"rstrip": false,
|
1818 |
+
"single_word": false,
|
1819 |
+
"special": true
|
1820 |
+
},
|
1821 |
+
"126307": {
|
1822 |
+
"content": "<|reserved_token_223|>",
|
1823 |
+
"lstrip": false,
|
1824 |
+
"normalized": false,
|
1825 |
+
"rstrip": false,
|
1826 |
+
"single_word": false,
|
1827 |
+
"special": true
|
1828 |
+
},
|
1829 |
+
"126308": {
|
1830 |
+
"content": "<|reserved_token_224|>",
|
1831 |
+
"lstrip": false,
|
1832 |
+
"normalized": false,
|
1833 |
+
"rstrip": false,
|
1834 |
+
"single_word": false,
|
1835 |
+
"special": true
|
1836 |
+
},
|
1837 |
+
"126309": {
|
1838 |
+
"content": "<|reserved_token_225|>",
|
1839 |
+
"lstrip": false,
|
1840 |
+
"normalized": false,
|
1841 |
+
"rstrip": false,
|
1842 |
+
"single_word": false,
|
1843 |
+
"special": true
|
1844 |
+
},
|
1845 |
+
"126310": {
|
1846 |
+
"content": "<|reserved_token_226|>",
|
1847 |
+
"lstrip": false,
|
1848 |
+
"normalized": false,
|
1849 |
+
"rstrip": false,
|
1850 |
+
"single_word": false,
|
1851 |
+
"special": true
|
1852 |
+
},
|
1853 |
+
"126311": {
|
1854 |
+
"content": "<|reserved_token_227|>",
|
1855 |
+
"lstrip": false,
|
1856 |
+
"normalized": false,
|
1857 |
+
"rstrip": false,
|
1858 |
+
"single_word": false,
|
1859 |
+
"special": true
|
1860 |
+
},
|
1861 |
+
"126312": {
|
1862 |
+
"content": "<|reserved_token_228|>",
|
1863 |
+
"lstrip": false,
|
1864 |
+
"normalized": false,
|
1865 |
+
"rstrip": false,
|
1866 |
+
"single_word": false,
|
1867 |
+
"special": true
|
1868 |
+
},
|
1869 |
+
"126313": {
|
1870 |
+
"content": "<|reserved_token_229|>",
|
1871 |
+
"lstrip": false,
|
1872 |
+
"normalized": false,
|
1873 |
+
"rstrip": false,
|
1874 |
+
"single_word": false,
|
1875 |
+
"special": true
|
1876 |
+
},
|
1877 |
+
"126314": {
|
1878 |
+
"content": "<|reserved_token_230|>",
|
1879 |
+
"lstrip": false,
|
1880 |
+
"normalized": false,
|
1881 |
+
"rstrip": false,
|
1882 |
+
"single_word": false,
|
1883 |
+
"special": true
|
1884 |
+
},
|
1885 |
+
"126315": {
|
1886 |
+
"content": "<|reserved_token_231|>",
|
1887 |
+
"lstrip": false,
|
1888 |
+
"normalized": false,
|
1889 |
+
"rstrip": false,
|
1890 |
+
"single_word": false,
|
1891 |
+
"special": true
|
1892 |
+
},
|
1893 |
+
"126316": {
|
1894 |
+
"content": "<|reserved_token_232|>",
|
1895 |
+
"lstrip": false,
|
1896 |
+
"normalized": false,
|
1897 |
+
"rstrip": false,
|
1898 |
+
"single_word": false,
|
1899 |
+
"special": true
|
1900 |
+
},
|
1901 |
+
"126317": {
|
1902 |
+
"content": "<|reserved_token_233|>",
|
1903 |
+
"lstrip": false,
|
1904 |
+
"normalized": false,
|
1905 |
+
"rstrip": false,
|
1906 |
+
"single_word": false,
|
1907 |
+
"special": true
|
1908 |
+
},
|
1909 |
+
"126318": {
|
1910 |
+
"content": "<|reserved_token_234|>",
|
1911 |
+
"lstrip": false,
|
1912 |
+
"normalized": false,
|
1913 |
+
"rstrip": false,
|
1914 |
+
"single_word": false,
|
1915 |
+
"special": true
|
1916 |
+
},
|
1917 |
+
"126319": {
|
1918 |
+
"content": "<|reserved_token_235|>",
|
1919 |
+
"lstrip": false,
|
1920 |
+
"normalized": false,
|
1921 |
+
"rstrip": false,
|
1922 |
+
"single_word": false,
|
1923 |
+
"special": true
|
1924 |
+
},
|
1925 |
+
"126320": {
|
1926 |
+
"content": "<|reserved_token_236|>",
|
1927 |
+
"lstrip": false,
|
1928 |
+
"normalized": false,
|
1929 |
+
"rstrip": false,
|
1930 |
+
"single_word": false,
|
1931 |
+
"special": true
|
1932 |
+
},
|
1933 |
+
"126321": {
|
1934 |
+
"content": "<|reserved_token_237|>",
|
1935 |
+
"lstrip": false,
|
1936 |
+
"normalized": false,
|
1937 |
+
"rstrip": false,
|
1938 |
+
"single_word": false,
|
1939 |
+
"special": true
|
1940 |
+
},
|
1941 |
+
"126322": {
|
1942 |
+
"content": "<|reserved_token_238|>",
|
1943 |
+
"lstrip": false,
|
1944 |
+
"normalized": false,
|
1945 |
+
"rstrip": false,
|
1946 |
+
"single_word": false,
|
1947 |
+
"special": true
|
1948 |
+
},
|
1949 |
+
"126323": {
|
1950 |
+
"content": "<|reserved_token_239|>",
|
1951 |
+
"lstrip": false,
|
1952 |
+
"normalized": false,
|
1953 |
+
"rstrip": false,
|
1954 |
+
"single_word": false,
|
1955 |
+
"special": true
|
1956 |
+
},
|
1957 |
+
"126324": {
|
1958 |
+
"content": "<|reserved_token_240|>",
|
1959 |
+
"lstrip": false,
|
1960 |
+
"normalized": false,
|
1961 |
+
"rstrip": false,
|
1962 |
+
"single_word": false,
|
1963 |
+
"special": true
|
1964 |
+
},
|
1965 |
+
"126325": {
|
1966 |
+
"content": "<|reserved_token_241|>",
|
1967 |
+
"lstrip": false,
|
1968 |
+
"normalized": false,
|
1969 |
+
"rstrip": false,
|
1970 |
+
"single_word": false,
|
1971 |
+
"special": true
|
1972 |
+
},
|
1973 |
+
"126326": {
|
1974 |
+
"content": "<|reserved_token_242|>",
|
1975 |
+
"lstrip": false,
|
1976 |
+
"normalized": false,
|
1977 |
+
"rstrip": false,
|
1978 |
+
"single_word": false,
|
1979 |
+
"special": true
|
1980 |
+
},
|
1981 |
+
"126327": {
|
1982 |
+
"content": "<|reserved_token_243|>",
|
1983 |
+
"lstrip": false,
|
1984 |
+
"normalized": false,
|
1985 |
+
"rstrip": false,
|
1986 |
+
"single_word": false,
|
1987 |
+
"special": true
|
1988 |
+
},
|
1989 |
+
"126328": {
|
1990 |
+
"content": "<|reserved_token_244|>",
|
1991 |
+
"lstrip": false,
|
1992 |
+
"normalized": false,
|
1993 |
+
"rstrip": false,
|
1994 |
+
"single_word": false,
|
1995 |
+
"special": true
|
1996 |
+
},
|
1997 |
+
"126329": {
|
1998 |
+
"content": "<|reserved_token_245|>",
|
1999 |
+
"lstrip": false,
|
2000 |
+
"normalized": false,
|
2001 |
+
"rstrip": false,
|
2002 |
+
"single_word": false,
|
2003 |
+
"special": true
|
2004 |
+
},
|
2005 |
+
"126330": {
|
2006 |
+
"content": "<|reserved_token_246|>",
|
2007 |
+
"lstrip": false,
|
2008 |
+
"normalized": false,
|
2009 |
+
"rstrip": false,
|
2010 |
+
"single_word": false,
|
2011 |
+
"special": true
|
2012 |
+
},
|
2013 |
+
"126331": {
|
2014 |
+
"content": "<|reserved_token_247|>",
|
2015 |
+
"lstrip": false,
|
2016 |
+
"normalized": false,
|
2017 |
+
"rstrip": false,
|
2018 |
+
"single_word": false,
|
2019 |
+
"special": true
|
2020 |
+
},
|
2021 |
+
"126332": {
|
2022 |
+
"content": "<|reserved_token_248|>",
|
2023 |
+
"lstrip": false,
|
2024 |
+
"normalized": false,
|
2025 |
+
"rstrip": false,
|
2026 |
+
"single_word": false,
|
2027 |
+
"special": true
|
2028 |
+
},
|
2029 |
+
"126333": {
|
2030 |
+
"content": "<|reserved_token_249|>",
|
2031 |
+
"lstrip": false,
|
2032 |
+
"normalized": false,
|
2033 |
+
"rstrip": false,
|
2034 |
+
"single_word": false,
|
2035 |
+
"special": true
|
2036 |
+
},
|
2037 |
+
"126334": {
|
2038 |
+
"content": "<|reserved_token_250|>",
|
2039 |
+
"lstrip": false,
|
2040 |
+
"normalized": false,
|
2041 |
+
"rstrip": false,
|
2042 |
+
"single_word": false,
|
2043 |
+
"special": true
|
2044 |
+
},
|
2045 |
+
"126335": {
|
2046 |
+
"content": "<|reserved_token_251|>",
|
2047 |
+
"lstrip": false,
|
2048 |
+
"normalized": false,
|
2049 |
+
"rstrip": false,
|
2050 |
+
"single_word": false,
|
2051 |
+
"special": true
|
2052 |
+
},
|
2053 |
+
"126336": {
|
2054 |
+
"content": "<|mdm_mask|>",
|
2055 |
+
"lstrip": false,
|
2056 |
+
"normalized": false,
|
2057 |
+
"rstrip": false,
|
2058 |
+
"single_word": false,
|
2059 |
+
"special": true
|
2060 |
+
},
|
2061 |
+
"126337": {
|
2062 |
+
"content": "<|reserved_token_253|>",
|
2063 |
+
"lstrip": false,
|
2064 |
+
"normalized": false,
|
2065 |
+
"rstrip": false,
|
2066 |
+
"single_word": false,
|
2067 |
+
"special": true
|
2068 |
+
},
|
2069 |
+
"126338": {
|
2070 |
+
"content": "<|reserved_token_254|>",
|
2071 |
+
"lstrip": false,
|
2072 |
+
"normalized": false,
|
2073 |
+
"rstrip": false,
|
2074 |
+
"single_word": false,
|
2075 |
+
"special": true
|
2076 |
+
},
|
2077 |
+
"126339": {
|
2078 |
+
"content": "<|reserved_token_255|>",
|
2079 |
+
"lstrip": false,
|
2080 |
+
"normalized": false,
|
2081 |
+
"rstrip": false,
|
2082 |
+
"single_word": false,
|
2083 |
+
"special": true
|
2084 |
+
},
|
2085 |
+
"126340": {
|
2086 |
+
"content": "<role>",
|
2087 |
+
"lstrip": false,
|
2088 |
+
"normalized": false,
|
2089 |
+
"rstrip": false,
|
2090 |
+
"single_word": false,
|
2091 |
+
"special": true
|
2092 |
+
},
|
2093 |
+
"126341": {
|
2094 |
+
"content": "</role>",
|
2095 |
+
"lstrip": false,
|
2096 |
+
"normalized": false,
|
2097 |
+
"rstrip": false,
|
2098 |
+
"single_word": false,
|
2099 |
+
"special": true
|
2100 |
+
},
|
2101 |
+
"126342": {
|
2102 |
+
"content": "<|arithmetic_start|>",
|
2103 |
+
"lstrip": false,
|
2104 |
+
"normalized": false,
|
2105 |
+
"rstrip": false,
|
2106 |
+
"single_word": false,
|
2107 |
+
"special": true
|
2108 |
+
},
|
2109 |
+
"126343": {
|
2110 |
+
"content": "<|arithmetic_end|>",
|
2111 |
+
"lstrip": false,
|
2112 |
+
"normalized": false,
|
2113 |
+
"rstrip": false,
|
2114 |
+
"single_word": false,
|
2115 |
+
"special": true
|
2116 |
+
},
|
2117 |
+
"126344": {
|
2118 |
+
"content": "<|number_start|>",
|
2119 |
+
"lstrip": false,
|
2120 |
+
"normalized": false,
|
2121 |
+
"rstrip": false,
|
2122 |
+
"single_word": false,
|
2123 |
+
"special": true
|
2124 |
+
},
|
2125 |
+
"126345": {
|
2126 |
+
"content": "<|number_end|>",
|
2127 |
+
"lstrip": false,
|
2128 |
+
"normalized": false,
|
2129 |
+
"rstrip": false,
|
2130 |
+
"single_word": false,
|
2131 |
+
"special": true
|
2132 |
+
},
|
2133 |
+
"126346": {
|
2134 |
+
"content": "<|start_header_id|>",
|
2135 |
+
"lstrip": false,
|
2136 |
+
"normalized": false,
|
2137 |
+
"rstrip": false,
|
2138 |
+
"single_word": false,
|
2139 |
+
"special": true
|
2140 |
+
},
|
2141 |
+
"126347": {
|
2142 |
+
"content": "<|end_header_id|>",
|
2143 |
+
"lstrip": false,
|
2144 |
+
"normalized": false,
|
2145 |
+
"rstrip": false,
|
2146 |
+
"single_word": false,
|
2147 |
+
"special": true
|
2148 |
+
},
|
2149 |
+
"126348": {
|
2150 |
+
"content": "<|eot_id|>",
|
2151 |
+
"lstrip": false,
|
2152 |
+
"normalized": false,
|
2153 |
+
"rstrip": false,
|
2154 |
+
"single_word": false,
|
2155 |
+
"special": true
|
2156 |
+
}
|
2157 |
+
},
|
2158 |
+
"additional_special_tokens": [
|
2159 |
+
"<role>",
|
2160 |
+
"</role>",
|
2161 |
+
"<|arithmetic_start|>",
|
2162 |
+
"<|arithmetic_end|>",
|
2163 |
+
"<|number_start|>",
|
2164 |
+
"<|number_end|>"
|
2165 |
+
],
|
2166 |
+
"bos_token": "<|startoftext|>",
|
2167 |
+
"chat_template": "{% set loop_messages = messages %}{% for message in loop_messages %}{% set content = '<|start_header_id|>' + message['role'] + '<|end_header_id|>\n\n'+ message['content'] | trim + '<|eot_id|>' %}{% if loop.index0 == 0 %}{% set content = bos_token + content %}{% endif %}{{ content }}{% endfor %}{{ '<|start_header_id|>assistant<|end_header_id|>\n\n' }}",
|
2168 |
+
"clean_up_tokenization_spaces": false,
|
2169 |
+
"cls_token": "[CLS]",
|
2170 |
+
"eos_token": "<|endoftext|>",
|
2171 |
+
"fast_tokenizer": true,
|
2172 |
+
"gmask_token": "[gMASK]",
|
2173 |
+
"merges_file": null,
|
2174 |
+
"model_input_names": [
|
2175 |
+
"input_ids",
|
2176 |
+
"attention_mask"
|
2177 |
+
],
|
2178 |
+
"model_max_length": 1000000000000000019884624838656,
|
2179 |
+
"pad_token": "<|endoftext|>",
|
2180 |
+
"tokenizer_class": "PreTrainedTokenizerFast",
|
2181 |
+
"trust_remote_code": true,
|
2182 |
+
"vocab_file": null
|
2183 |
+
}
|