--- license: mit base_model: BAAI/bge-base-en-v1.5 tags: - generated_from_trainer model-index: - name: TAPP-multilabel-bge results: [] datasets: - GIZ/policy_classification co2_eq_emissions: emissions: 71.4552917731392 source: codecarbon training_type: fine-tuning on_cloud: true cpu_model: Intel(R) Xeon(R) CPU @ 2.30GHz ram_total_size: 12.6747894287109 hours_used: 1.36 hardware_used: 1 x Tesla T4 --- # TAPP-multilabel-bge This model is a fine-tuned version of [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) on the [Policy-Classification](https://huggingface.co/datasets/GIZ/policy_classification) dataset. *The loss function BCEWithLogitsLoss is modified with pos_weight to focus on recall, therefore instead of loss the evaluation metrics are used to assess the model performance during training* It achieves the following results on the evaluation set: - Precision-micro: 0.7772 - Precision-samples: 0.7644 - Precision-weighted: 0.7756 - Recall-micro: 0.8329 - Recall-samples: 0.7920 - Recall-weighted: 0.8329 - F1-micro: 0.8041 - F1-samples: 0.7609 - F1-weighted: 0.8029 ## Model description The purpose of this model is to predict multiple labels simultaneously from a given input data. Specifically, the model will predict four labels - ActionLabel, PlansLabel, PolicyLabel, and TargetLabel - that are relevant to a particular task or application - **Target**: Targets are an intention to achieve a specific result, for example, to reduce GHG emissions to a specific level (a GHG target) or increase energy efficiency or renewable energy to a specific level (a non-GHG target), typically by a certain date. - **Action**: Actions are an intention to implement specific means of achieving GHG reductions, usually in forms of concrete projects. - **Policies**: Policies are domestic planning documents such as policies, regulations or guidlines. - **Plans**:Plans are broader than specific policies or actions, such as a general intention to ‘improve efficiency’, ‘develop renewable energy’, etc. *The terms come from the World Bank's NDC platform and WRI's publication* ## Intended uses & limitations More information needed ## Training and evaluation data - Training Dataset: 10031 | Class | Positive Count of Class| |:-------------|:--------| | Action | 5416 | | Plans | 2140 | | Policy | 1396| | Target | 2911 | - Validation Dataset: 932 | Class | Positive Count of Class| |:-------------|:--------| | Action | 513 | | Plans | 198 | | Policy | 122 | | Target | 256 | ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.4e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 200 - num_epochs: 7 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision-micro | Precision-samples | Precision-weighted | Recall-micro | Recall-samples | Recall-weighted | F1-micro | F1-samples | F1-weighted | |:-------------:|:-----:|:----:|:---------------:|:---------------:|:-----------------:|:------------------:|:------------:|:--------------:|:---------------:|:--------:|:----------:|:-----------:| | 0.7161 | 1.0 | 627 | 0.6322 | 0.5931 | 0.6373 | 0.6274 | 0.8219 | 0.7833 | 0.8219 | 0.6890 | 0.6728 | 0.7000 | | 0.4549 | 2.0 | 1254 | 0.5420 | 0.6639 | 0.6891 | 0.7049 | 0.8090 | 0.7684 | 0.8090 | 0.7293 | 0.7048 | 0.7409 | | 0.2599 | 3.0 | 1881 | 0.6966 | 0.7354 | 0.7396 | 0.7346 | 0.8219 | 0.7845 | 0.8219 | 0.7762 | 0.7425 | 0.7713 | | 0.1405 | 4.0 | 2508 | 0.7530 | 0.7569 | 0.7494 | 0.7569 | 0.8292 | 0.7899 | 0.8292 | 0.7914 | 0.7505 | 0.7905 | | 0.0681 | 5.0 | 3135 | 0.8234 | 0.7596 | 0.7535 | 0.7599 | 0.8356 | 0.7945 | 0.8356 | 0.7958 | 0.7546 | 0.7953 | | 0.0291 | 6.0 | 3762 | 0.8849 | 0.7773 | 0.7640 | 0.7776 | 0.8301 | 0.7890 | 0.8301 | 0.8028 | 0.7597 | 0.8027 | | 0.0147 | 7.0 | 4389 | 0.9217 | 0.7772 | 0.7644 | 0.7756 | 0.8329 | 0.7920 | 0.8329 | 0.8041 | 0.7609 | 0.8029 | |label | precision |recall |f1-score| support| |:-------------:|:---------:|:-----:|:------:|:------:| |Action |0.826 |0.883 |0.853 | 513.0 | |Plans |0.653 |0.646 |0.649 | 198.0 | |Policy |0.726 |0.803 |0.762 | 122.0 | |Target |0.791 |0.890 |0.838 | 256.0 | ### Environmental Impact Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon). - **Carbon Emitted**: 0.07145 kg of CO2 - **Hours Used**: 1.36 hours ### Training Hardware - **On Cloud**: yes - **GPU Model**: 1 x Tesla T4 - **CPU Model**: Intel(R) Xeon(R) CPU @ 2.30GHz - **RAM Size**: 12.67 GB ### Framework versions - Transformers 4.38.1 - Pytorch 2.1.0+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2