--- license: apache-2.0 base_model: climatebert/distilroberta-base-climate-f tags: - generated_from_trainer model-index: - name: ADAPMIT-multilabel-climatebert results: [] datasets: - GIZ/policy_classification co2_eq_emissions: emissions: 37.5331346075112 source: codecarbon training_type: fine-tuning on_cloud: true cpu_model: Intel(R) Xeon(R) CPU @ 2.00GHz ram_total_size: 12.6747894287109 hours_used: 0.659 hardware_used: 1 x Tesla T4 --- # ADAPMIT-multilabel-climatebert This model is a fine-tuned version of [climatebert/distilroberta-base-climate-f](https://huggingface.co/climatebert/distilroberta-base-climate-f) on the [Policy-Classification](https://huggingface.co/datasets/GIZ/policy_classification) dataset. It achieves the following results on the evaluation set: - Loss: 0.3535 - Precision-micro: 0.8999 - Precision-samples: 0.8559 - Precision-weighted: 0.9001 - Recall-micro: 0.9173 - Recall-samples: 0.8592 - Recall-weighted: 0.9173 - F1-micro: 0.9085 - F1-samples: 0.8521 - F1-weighted: 0.9085 ## Model description The purpose of this model is to predict multiple labels simultaneously from a given input data. Specifically, the model will predict 2 labels - AdaptationLabel, MitigationLabel - that are relevant to a particular task or application ## Intended uses & limitations More information needed ## Training and evaluation data - Training Dataset: 12538 | Class | Positive Count of Class| |:-------------|:--------| | AdaptationLabel | 5439 | | MitigationLabel | 6659 | - Validation Dataset: 1190 | Class | Positive Count of Class| |:-------------|:--------| | AdaptationLabel | 533 | | MitigationLabel | 604 | ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6.03e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 300 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision-micro | Precision-samples | Precision-weighted | Recall-micro | Recall-samples | Recall-weighted | F1-micro | F1-samples | F1-weighted | |:-------------:|:-----:|:----:|:---------------:|:---------------:|:-----------------:|:------------------:|:------------:|:--------------:|:---------------:|:--------:|:----------:|:-----------:| | 0.3512 | 1.0 | 784 | 0.3253 | 0.8530 | 0.8273 | 0.8572 | 0.8883 | 0.8311 | 0.8883 | 0.8703 | 0.8238 | 0.8703 | | 0.2152 | 2.0 | 1568 | 0.2604 | 0.8999 | 0.8580 | 0.9002 | 0.9094 | 0.8521 | 0.9094 | 0.9046 | 0.8510 | 0.9046 | | 0.1348 | 3.0 | 2352 | 0.2908 | 0.9038 | 0.8626 | 0.9059 | 0.9173 | 0.8588 | 0.9173 | 0.9105 | 0.8566 | 0.9107 | | 0.0767 | 4.0 | 3136 | 0.3367 | 0.8999 | 0.8563 | 0.9000 | 0.9173 | 0.8588 | 0.9173 | 0.9085 | 0.8524 | 0.9085 | | 0.0475 | 5.0 | 3920 | 0.3535 | 0.8999 | 0.8559 | 0.9001 | 0.9173 | 0.8592 | 0.9173 | 0.9085 | 0.8521 | 0.9085 | |label | precision |recall |f1-score| support| |:-------------:|:---------:|:-----:|:------:|:------:| |AdaptationLabel |0.909 |0.908 |0.909 | 533.0 | |MitigationLabel |0.891 |0.925 |0.908 | 604.0 | ### Environmental Impact Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon). - **Carbon Emitted**: 0.0375 kg of CO2 - **Hours Used**: 0.659 hours ### Training Hardware - **On Cloud**: yes - **GPU Model**: 1 x Tesla T4 - **CPU Model**: Intel(R) Xeon(R) CPU @ 2.00GHz - **RAM Size**: 12.67 GB ### Framework versions - Transformers 4.38.1 - Pytorch 2.1.0+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2