--- language: - ko license: apache-2.0 base_model: openai/whisper-small tags: - whisper-event - generated_from_trainer datasets: - GGarri/customdataset metrics: - wer model-index: - name: Whisper Small ko results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: customdata type: GGarri/customdataset metrics: - name: Wer type: wer value: 6.9309637730690365 --- # Whisper Small ko This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the customdata dataset. It achieves the following results on the evaluation set: - Loss: 0.0268 - Cer: 6.5045 - Wer: 6.9310 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 500 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Cer | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:| | 3.6391 | 0.54 | 25 | 3.3230 | 83.6552 | 35.4340 | | 2.7648 | 1.09 | 50 | 2.3011 | 81.2725 | 31.6473 | | 1.8272 | 1.63 | 75 | 1.4490 | 85.9460 | 43.8688 | | 1.0827 | 2.17 | 100 | 0.8137 | 72.8033 | 59.1524 | | 0.6201 | 2.72 | 125 | 0.4756 | 50.5476 | 49.9522 | | 0.3539 | 3.26 | 150 | 0.3005 | 31.1094 | 31.5926 | | 0.2358 | 3.8 | 175 | 0.1969 | 29.5962 | 31.3192 | | 0.1501 | 4.35 | 200 | 0.1352 | 21.1688 | 21.7772 | | 0.0967 | 4.89 | 225 | 0.0846 | 18.6941 | 19.0431 | | 0.0471 | 5.43 | 250 | 0.0350 | 18.3931 | 18.9200 | | 0.0162 | 5.98 | 275 | 0.0335 | 18.9616 | 19.5215 | | 0.0121 | 6.52 | 300 | 0.0324 | 14.1293 | 15.5707 | | 0.011 | 7.07 | 325 | 0.0261 | 12.9755 | 14.3267 | | 0.0078 | 7.61 | 350 | 0.0223 | 9.3220 | 10.5400 | | 0.0075 | 8.15 | 375 | 0.0217 | 5.8106 | 6.5482 | | 0.0052 | 8.7 | 400 | 0.0208 | 7.9926 | 8.6945 | | 0.0048 | 9.24 | 425 | 0.0213 | 5.3424 | 5.7280 | | 0.0053 | 9.78 | 450 | 0.0212 | 7.5328 | 7.9973 | | 0.004 | 10.33 | 475 | 0.0213 | 5.7186 | 5.9740 | | 0.0054 | 10.87 | 500 | 0.0268 | 6.5045 | 6.9310 | ### Framework versions - Transformers 4.39.2 - Pytorch 2.0.1 - Datasets 2.18.0 - Tokenizers 0.15.2