"""PyTorch GEB model.""" import math import copy import os import warnings from dataclasses import dataclass from typing import Optional, Tuple, Dict, Any, List import importlib.util from torch.nn.utils import skip_init import torch.nn.functional as F import torch import torch.utils.checkpoint from torch import einsum, nn from torch.cuda.amp import autocast from torch.nn import BCEWithLogitsLoss, LayerNorm, CrossEntropyLoss, MSELoss from copy import deepcopy from deepspeed.accelerator import get_accelerator try: from einops import rearrange except ImportError: rearrange = None from transformers.modeling_outputs import ( BaseModelOutputWithPast, CausalLMOutputWithPast, QuestionAnsweringModelOutput, SequenceClassifierOutputWithPast, TokenClassifierOutput, ) from transformers.modeling_utils import PreTrainedModel from transformers.utils import ( ModelOutput, add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from transformers.generation.logits_process import LogitsProcessor from transformers.generation.utils import LogitsProcessorList, StoppingCriteriaList, GenerationConfig, ModelOutput from transformers.utils.model_parallel_utils import assert_device_map, get_device_map from .configuration_geblm import GEBConfig try: # FlashAttention-2 from flash_attn.flash_attn_interface import flash_attn_varlen_func except ImportError: flash_attn_varlen_func = None FlashAttentionBuilder = get_accelerator().get_op_builder("FlashAttentionBuilder") flash_attn_builder = None logger = logging.get_logger(__name__) _CHECKPOINT_FOR_DOC = "geb" _CONFIG_FOR_DOC = "GEBConfig" def _config_to_kwargs(args): common_kwargs = { "dtype": args.torch_dtype, } return common_kwargs def default_init(cls, *args, **kwargs): return cls(*args, **kwargs) class InvalidScoreLogitsProcessor(LogitsProcessor): def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor: if torch.isnan(scores).any() or torch.isinf(scores).any(): scores.zero_() scores[..., 5] = 5e4 return scores def split_tensor_along_last_dim( tensor: torch.Tensor, num_partitions: int, contiguous_split_chunks: bool = False, ) -> List[torch.Tensor]: """ Split a tensor along its last dimension. Arguments: tensor: input tensor. num_partitions: number of partitions to split the tensor contiguous_split_chunks: If True, make each chunk contiguous in memory. Returns: A list of Tensors """ # Get the size and dimension. last_dim = tensor.dim() - 1 last_dim_size = tensor.size()[last_dim] // num_partitions # Split. tensor_list = torch.split(tensor, last_dim_size, dim=last_dim) # Note: torch.split does not create contiguous tensors by default. if contiguous_split_chunks: return tuple(chunk.contiguous() for chunk in tensor_list) return tensor_list class PrefixEncoder(torch.nn.Module): """ The torch.nn model to encode the prefix Input shape: (batch-size, prefix-length) Output shape: (batch-size, prefix-length, 2*layers*hidden) """ def __init__(self, config: GEBConfig): super().__init__() self.prefix_projection = config.prefix_projection self.num_key_value_groups = config.num_attention_heads // config.num_key_value_heads if self.prefix_projection: # Use a two-layer MLP to encode the prefix kv_size = config.num_layers * config.kv_channels * self.num_key_value_groups * 2 self.embedding = torch.nn.Embedding(config.pre_seq_len, kv_size) self.trans = torch.nn.Sequential( torch.nn.Linear(kv_size, config.hidden_size), torch.nn.Tanh(), torch.nn.Linear(config.hidden_size, kv_size) ) else: self.embedding = torch.nn.Embedding(config.pre_seq_len, config.num_layers * config.kv_channels * self.num_key_value_groups * 2) def forward(self, prefix: torch.Tensor): if self.prefix_projection: prefix_tokens = self.embedding(prefix) past_key_values = self.trans(prefix_tokens) else: past_key_values = self.embedding(prefix) return past_key_values # class RotaryEmbedding(nn.Module): # def __init__(self, dim, original_impl=False, device=None, dtype=None): # super().__init__() # inv_freq = 1.0 / (10000 ** (torch.arange(0, dim, 2, device=device).to(dtype=dtype) / dim)) # self.register_buffer("inv_freq", inv_freq) # self.dim = dim # self.original_impl = original_impl # def forward_impl( # self, seq_len: int, n_elem: int, dtype: torch.dtype, device: torch.device, base: int = 10000 # ): # """Enhanced Transformer with Rotary Position Embedding. # Derived from: https://github.com/labmlai/annotated_deep_learning_paper_implementations/blob/master/labml_nn/ # transformers/rope/__init__.py. MIT License: # https://github.com/labmlai/annotated_deep_learning_paper_implementations/blob/master/license. # """ # # $\Theta = {\theta_i = 10000^{\frac{2(i-1)}{d}}, i \in [1, 2, ..., \frac{d}{2}]}$ # theta = 1.0 / (base ** (torch.arange(0, n_elem, 2, dtype=torch.float, device=device) / n_elem)) # # Create position indexes `[0, 1, ..., seq_len - 1]` # seq_idx = torch.arange(seq_len, dtype=torch.float, device=device) # # Calculate the product of position index and $\theta_i$ # idx_theta = torch.outer(seq_idx, theta).float() # cache = torch.stack([torch.cos(idx_theta), torch.sin(idx_theta)], dim=-1) # # this is to mimic the behaviour of complex32, else we will get different results # if dtype in (torch.float16, torch.bfloat16, torch.int8): # cache = cache.bfloat16() if dtype == torch.bfloat16 else cache.half() # return cache # def forward(self, max_seq_len, offset=0): # return self.forward_impl( # max_seq_len, self.dim, dtype=self.inv_freq.dtype, device=self.inv_freq.device # ) # @torch.jit.script # def apply_rotary_pos_emb(x: torch.Tensor, rope_cache: torch.Tensor) -> torch.Tensor: # # x: [sq, b, np, hn] # sq, b, np, hn = x.size(0), x.size(1), x.size(2), x.size(3) # rot_dim = rope_cache.shape[-2] * 2 # x, x_pass = x[..., :rot_dim], x[..., rot_dim:] # # truncate to support variable sizes # rope_cache = rope_cache[:sq] # xshaped = x.reshape(sq, -1, np, rot_dim // 2, 2) # rope_cache = rope_cache.view(sq, -1, 1, xshaped.size(3), 2) # x_out2 = torch.stack( # [ # xshaped[..., 0] * rope_cache[..., 0] - xshaped[..., 1] * rope_cache[..., 1], # xshaped[..., 1] * rope_cache[..., 0] + xshaped[..., 0] * rope_cache[..., 1], # ], # -1, # ) # x_out2 = x_out2.flatten(3) # return torch.cat((x_out2, x_pass), dim=-1) class RotaryEmbedding(nn.Module): def __init__(self, dim): super().__init__() inv_freq = 1.0 / (10000 ** (torch.arange(0, dim, 2).float() / dim)) self.register_buffer('inv_freq', inv_freq) if importlib.util.find_spec('einops') is None: raise RuntimeError("einops is required for Rotary Embedding") def forward(self, max_seq_len, offset=0): seq = torch.arange(max_seq_len, device=self.inv_freq.device) + offset # Calculate the product of seq and inv_freq freqs = einsum('i , j -> i j', seq.type_as(self.inv_freq), self.inv_freq) # first part even vector components, second part odd vector components, # 2 * dim in dimension size emb = torch.cat((freqs, freqs), dim=-1) # emb [seq_length, .., dim] from einops import rearrange # print('rearrange:', rearrange(emb, 'n d -> n 1 1 d').size()) return rearrange(emb, 'n d -> n 1 1 d') def _rotate_half(x): """ change sign so the last dimension becomes [-odd, +even] """ from einops import rearrange x = rearrange(x, '... (j d) -> ... j d', j=2) x1, x2 = x.unbind(dim=-2) return torch.cat((-x2, x1), dim=-1) def apply_rotary_pos_emb(t, freqs): """ input tensor t is of shape [seq_length, ..., dim] rotary positional embeding tensor freqs is of shape [seq_length, ..., dim] check https://kexue.fm/archives/8265 for detailed formulas """ # print('t:', t.size()) # print('freqs:', freqs.size()) rot_dim = freqs.shape[-1] # print('rot_dim:', rot_dim) # ideally t_pass is empty so rotary pos embedding is applied to all tensor t t, t_pass = t[..., :rot_dim], t[..., rot_dim:] # first part is cosine component # second part is sine component, need to change signs with _rotate_half method # print(t.shape, t_pass.shape, freqs.shape) t = (t * freqs.cos().to(t.dtype)) + (_rotate_half(t) * freqs.sin().to(t.dtype)) return torch.cat((t, t_pass), dim=-1) class RMSNorm(torch.nn.Module): def __init__(self, normalized_shape, eps=1e-5, device=None, dtype=None, **kwargs): super().__init__() self.weight = torch.nn.Parameter(torch.empty(normalized_shape, device=device, dtype=dtype)) self.eps = eps def forward(self, hidden_states: torch.Tensor): input_dtype = hidden_states.dtype variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True) hidden_states = hidden_states * torch.rsqrt(variance + self.eps) return (self.weight * hidden_states).to(input_dtype) class MLP(torch.nn.Module): """MLP. MLP will take the input with h hidden state, project it to 4*h hidden dimension, perform nonlinear transformation, and project the state back into h hidden dimension. """ def __init__(self, config: GEBConfig, device=None): super(MLP, self).__init__() self.add_bias = config.add_bias_linear #false # Project to 4h. If using swiglu double the output width, see https://arxiv.org/pdf/2002.05202.pdf self.dense_h_to_4h = nn.Linear( config.hidden_size, config.ffn_hidden_size * 2, # config.ffn_hidden_size * 2 bias=self.add_bias, device=device, **_config_to_kwargs(config) ) def swiglu(x): x = torch.chunk(x, 2, dim=-1) return F.silu(x[0]) * x[1] self.activation_func = swiglu # Project back to h. self.dense_4h_to_h = nn.Linear( config.ffn_hidden_size, config.hidden_size, bias=self.add_bias, device=device, **_config_to_kwargs(config) ) def forward(self, hidden_states): # [s, b, 4hp] intermediate_parallel = self.dense_h_to_4h(hidden_states) intermediate_parallel = self.activation_func(intermediate_parallel) # [s, b, h] output = self.dense_4h_to_h(intermediate_parallel) return output class CoreAttention(torch.nn.Module): def __init__(self, config: GEBConfig, layer_number): super(CoreAttention, self).__init__() # self.fp16 = config.fp16 # self.bf16 = config.bf16 self.apply_query_key_layer_scaling = config.apply_query_key_layer_scaling self.attention_softmax_in_fp32 = config.attention_softmax_in_fp32 if self.apply_query_key_layer_scaling: self.attention_softmax_in_fp32 = True self.layer_number = max(1, layer_number) self.num_layers = config.num_layers projection_size = config.kv_channels * config.num_attention_heads # Per attention head and per partition values. self.hidden_size_per_partition = projection_size self.hidden_size_per_attention_head = projection_size // config.num_attention_heads self.num_attention_heads_per_partition = config.num_attention_heads coeff = None self.norm_factor = math.sqrt(self.hidden_size_per_attention_head) if self.apply_query_key_layer_scaling: coeff = self.layer_number self.norm_factor *= coeff self.coeff = coeff # Dropout. Note that for a single iteration, this layer will generate # different outputs on different number of parallel partitions but # on average it should not be partition dependent. self.attention_dropout = torch.nn.Dropout(config.attention_dropout) def forward(self, query_layer, key_layer, value_layer, attention_mask): # =================================== # Raw attention scores. [b, np, s, s] # =================================== # [b, np, sq, sk] output_size = (query_layer.size(1), query_layer.size(2), query_layer.size(0), key_layer.size(0)) # [sq, b, np, hn] -> [sq, b * np, hn] query_layer = query_layer.view(output_size[2], output_size[0] * output_size[1], -1) # [sk, b, np, hn] -> [sk, b * np, hn] key_layer = key_layer.view(output_size[3], output_size[0] * output_size[1], -1) # preallocting input tensor: [b * np, sq, sk],Tensor to store matrix multiplication of query and key matmul_input_buffer = torch.empty( output_size[0] * output_size[1], output_size[2], output_size[3], dtype=query_layer.dtype, device=query_layer.device ) # Raw attention scores. [b * np, sq, sk] matmul_result = torch.baddbmm( matmul_input_buffer, query_layer.transpose(0, 1), # [b * np, sq, hn] key_layer.transpose(0, 1).transpose(1, 2), # [b * np, hn, sk] beta=0.0, alpha=(1.0/self.norm_factor)) # change view to [b, np, sq, sk] attention_scores = matmul_result.view(*output_size) # =========================== # Attention probs and dropout # =========================== # attention scores and attention mask [b, np, sq, sk] if self.attention_softmax_in_fp32: attention_scores = attention_scores.float() if self.coeff is not None: attention_scores = attention_scores * self.coeff if attention_mask is None and attention_scores.shape[2] == attention_scores.shape[3]: attention_mask = torch.ones(output_size[0], 1, output_size[2], output_size[3], device=attention_scores.device, dtype=torch.bool) attention_mask.tril_() attention_mask = ~attention_mask if attention_mask is not None: attention_scores = attention_scores.masked_fill(attention_mask, float("-inf")) attention_probs = F.softmax(attention_scores, dim=-1) attention_probs = attention_probs.type_as(value_layer) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. attention_probs = self.attention_dropout(attention_probs) # ========================= # Context layer. [sq, b, hp] # ========================= # value_layer -> context layer. # [sk, b, np, hn] --> [b, np, sq, hn] # context layer shape: [b, np, sq, hn] output_size = (value_layer.size(1), value_layer.size(2), query_layer.size(0), value_layer.size(3)) # change view [sk, b * np, hn] value_layer = value_layer.contiguous().view(value_layer.size(0), output_size[0] * output_size[1], -1) # change view [b * np, sq, sk] attention_probs = attention_probs.view(output_size[0] * output_size[1], output_size[2], -1) # matmul: [b * np, sq, hn] context_layer = torch.bmm(attention_probs, value_layer.transpose(0, 1)) # change view [b, np, sq, hn] context_layer = context_layer.view(*output_size) # [b, np, sq, hn] --> [sq, b, np, hn] context_layer = context_layer.permute(2, 0, 1, 3).contiguous() # [sq, b, np, hn] --> [sq, b, hp] new_context_layer_shape = context_layer.size()[:-2] + \ (self.hidden_size_per_partition,) context_layer = context_layer.view(*new_context_layer_shape) return context_layer class FlashSelfAttention(torch.nn.Module): """Implement the scaled dot product attention with softmax. Arguments --------- softmax_scale: The temperature to use for the softmax attention. (default: 1/sqrt(d_keys) where d_keys is computed at runtime) attention_dropout: The dropout rate to apply to the attention (default: 0.0) """ def __init__(self, config: GEBConfig, causal=False, softmax_scale=None, attention_dropout=0.0, device=None, dtype=None): super().__init__() assert flash_attn_varlen_func is not None or flash_attn_builder is not None, \ ('Please install FlashAttention first, e.g., with pip install flash-attn or implement your own flash attention') assert rearrange is not None, 'Please install einops first, e.g., with pip install einops' self.config = config self.causal = causal self.softmax_scale = softmax_scale self.dropout_p = attention_dropout # Use FlashAttention-2 when args.use_flash_attn_v2 is True self.flash_attn_func = flash_attn_varlen_func if config.use_flash_attn else print('false to Use FlashAttention-2') def forward(self, q, k, v): """Implements the multihead softmax attention. Arguments --------- q, k, v: The tensor containing the query, key, and value. (B, S, H, D) """ # print(i.dtype() for i in (q,k,v) ) # assert all((i.dtype in [torch.float16, torch.bfloat16] for i in (q,k,v))) # assert all((get_accelerator().on_accelerator(i) for i in (q, k, v))) # if get_accelerator().device_name() == 'cuda': # assert all((i.is_cuda for i in (q,k,v))) # else: # assert all((i.is_xpu for i in (q,k,v))) batch_size, seqlen_q = q.shape[0], q.shape[1] seqlen_k = k.shape[1] if get_accelerator().device_name() == 'cuda': # goes for cuda device q, k, v = [rearrange(x, 'b s ... -> (b s) ...') for x in [q, k, v]] cu_seqlens_q = torch.arange(0, (batch_size + 1) * seqlen_q, step=seqlen_q, dtype=torch.int32, device=q.device) else: # goes for other device q, k, v = [rearrange(x, 'b s h d -> b h s d').contiguous() for x in [q, k, v]] if self.training: # during training q,k,v always have same seqlen assert seqlen_k == seqlen_q is_causal = self.causal cu_seqlens_k = cu_seqlens_q if get_accelerator().device_name() == 'cuda' else None dropout_p = self.dropout_p else: # turn off FA causal mask after first inference autoregressive iteration # only on first autoregressive step q,k,v have same seqlen is_causal = seqlen_q == seqlen_k cu_seqlens_k = torch.arange(0, (batch_size + 1) * seqlen_k, step=seqlen_k, dtype=torch.int32, device=q.device) if get_accelerator().device_name() == 'cuda' else None dropout_p = 0 output = self.flash_attn_func( q, k, v, cu_seqlens_q, cu_seqlens_k, seqlen_q, seqlen_k, dropout_p, softmax_scale=self.softmax_scale, causal=is_causal ) if get_accelerator().device_name() == 'cuda' else flash_attn_builder.flash_attn_func( q, k, v, self.dropout_p, self.softmax_scale, is_causal ) output = rearrange(output, '(b s) ... -> b s ...', b=batch_size) if get_accelerator().device_name() == 'cuda' else rearrange( output, 'b h s d -> b s h d').contiguous() return output class GEBAttention(nn.Module): """Parallel self-attention layer abstract class. Self-attention layer takes input with size [s, b, h] and returns output of the same size. """ def __init__(self, config: GEBConfig, layer_number, device=None): super().__init__() self.config = config self.layer_number = max(1, layer_number) self.projection_size = config.kv_channels * config.num_attention_heads self.use_flash_attn = config.use_flash_attn # Per attention head and per partition values. self.hidden_size_per_partition = self.projection_size self.hidden_size_per_attention_head = self.projection_size // config.num_attention_heads self.num_attention_heads_per_partition = config.num_attention_heads self.num_key_value_heads_per_partition = config.num_key_value_heads self.num_key_value_groups = config.num_attention_heads // config.num_key_value_heads self.kv_projection_size = config.kv_channels * config.num_key_value_heads assert self.hidden_size_per_attention_head == self.kv_projection_size // config.num_key_value_heads # self.max_position_embeddings = config.model_max_length if self.use_flash_attn: global flash_attn_builder try: flash_attn_builder = FlashAttentionBuilder().load() except TypeError: flash_attn_builder = None assert flash_attn_varlen_func != None, "Cannot import FlashAttention v2 " if rearrange is None: raise ImportError('einops is not installed, please install with pip install einops') self.query = nn.Linear(config.hidden_size, self.projection_size, bias=config.add_bias_linear, device=device, **_config_to_kwargs(config) ) self.key_value = nn.Linear(config.hidden_size, 2 * self.kv_projection_size, bias=config.add_bias_linear, device=device, **_config_to_kwargs(config) ) if config.use_flash_attn: self.core_attention_flash = FlashSelfAttention(config, causal=True, attention_dropout=config.attention_dropout) else: self.core_attention = CoreAttention(config, self.layer_number) self.dense = nn.Linear(self.projection_size, config.hidden_size, bias=config.add_bias_linear, device=device, **_config_to_kwargs(config) ) def _allocate_memory(self, inference_max_sequence_len, batch_size, device=None, dtype=None): return torch.empty( inference_max_sequence_len, batch_size, self.num_key_value_groups, self.hidden_size_per_attention_head, dtype=dtype, device=device) def repeat_kv(self, hidden_states, n_rep): slen, batch, num_key_value_heads_per_partition, head_dim = hidden_states.shape if n_rep == 1: return hidden_states hidden_states = hidden_states[:, :, :, None, :].expand( slen, batch, num_key_value_heads_per_partition, n_rep, head_dim) return hidden_states.reshape(slen, batch, num_key_value_heads_per_partition * n_rep, head_dim) def forward(self, hidden_states, attention_mask, rotary_pos_emb=None, kv_cache=None, use_cache=True): # Attention head [sq, b, h]--> [sq, b, hp] query_layer = self.query(hidden_states) # [sq, b, hp] --> [sq, b, np, hn] new_tensor_shape = query_layer.size()[:-1] + \ (self.num_attention_heads_per_partition, self.hidden_size_per_attention_head) query_layer = query_layer.view(*new_tensor_shape) # Attention heads [sq, b, h] --> [sq, b, (np * 2 * hn)] mixed_kv_layer = self.key_value(hidden_states) # [sq, b, (np * 2 * hn)] --> [sq, b, np, 2 * hn] new_tensor_shape = mixed_kv_layer.size()[:-1] + \ (self.num_key_value_heads_per_partition, 2 * self.hidden_size_per_attention_head) mixed_kv_layer = mixed_kv_layer.view(*new_tensor_shape) # [sq, b, np, 2 * hn] --> 2 [sq, b, np, hn] (key_layer, value_layer) = split_tensor_along_last_dim( mixed_kv_layer, 2) # Repeat kv key_layer = self.repeat_kv(key_layer, self.num_key_value_groups) value_layer = self.repeat_kv(value_layer, self.num_key_value_groups) # if rotary_pos_emb is not None: # query_layer = apply_rotary_pos_emb(query_layer, rotary_pos_emb) # key_layer = apply_rotary_pos_emb(key_layer, rotary_pos_emb) # duplicate the pos_emb for self attention if rotary_pos_emb is not None: if isinstance(rotary_pos_emb, tuple): rotary_pos_emb = rotary_pos_emb else: rotary_pos_emb = ((rotary_pos_emb,) * 2) q_pos_emb, k_pos_emb = rotary_pos_emb query_layer = apply_rotary_pos_emb(query_layer, q_pos_emb) key_layer = apply_rotary_pos_emb(key_layer, k_pos_emb) # adjust key and value for inference if kv_cache is not None: cache_k, cache_v = kv_cache key_layer = torch.cat((cache_k, key_layer), dim=0) value_layer = torch.cat((cache_v, value_layer), dim=0) if use_cache: kv_cache = (key_layer, value_layer) else: kv_cache = None if self.use_flash_attn: query_layer, key_layer, value_layer = [rearrange(x, 's b ... -> b s ...').contiguous() for x in (query_layer, key_layer, value_layer)] context_layer = self.core_attention_flash(query_layer, key_layer, value_layer) context_layer = rearrange(context_layer, 'b s h d -> s b (h d)').contiguous() else: context_layer = self.core_attention( query_layer, key_layer, value_layer, attention_mask) output= self.dense(context_layer)# output, bias = self.dense(context_layer) return output, kv_cache class GEBBlock(torch.nn.Module): """A single transformer layer. Transformer layer takes input with size [s, b, h] and returns an output of the same size. """ def __init__(self, config: GEBConfig, layer_number, device=None): super(GEBBlock, self).__init__() self.layer_number = layer_number self.apply_residual_connection_post_layernorm \ = config.apply_residual_connection_post_layernorm # self.bf16 = config.bf16 self.fp32_residual_connection = config.fp32_residual_connection self.input_layernorm = RMSNorm(config.hidden_size, eps=config.layernorm_epsilon, device=device, dtype=config.torch_dtype) self.self_attention = GEBAttention(config, layer_number, device=device) self.hidden_dropout = config.hidden_dropout self.post_attention_layernorm = RMSNorm(config.hidden_size, eps=config.layernorm_epsilon, device=device, dtype=config.torch_dtype) self.mlp = MLP(config, device=device) def forward(self, hidden_states, attention_mask=None, rotary_pos_emb=None, kv_cache=None, use_cache=True): # hidden_states: [s, b, h] # Layer norm at the beginning of the transformer layer. layernorm_output = self.input_layernorm(hidden_states) # Self attention. attention_output, kv_cache = \ self.self_attention( layernorm_output, attention_mask, rotary_pos_emb=rotary_pos_emb, kv_cache=kv_cache, use_cache=use_cache) # Residual connection. if self.apply_residual_connection_post_layernorm: residual = layernorm_output else: residual = hidden_states layernorm_input = torch.nn.functional.dropout(attention_output, p=0.0, training=self.training) layernorm_input = residual + layernorm_input # Layer norm post the self attention. layernorm_output = self.post_attention_layernorm(layernorm_input) # MLP. mlp_output = self.mlp(layernorm_output) # Second residual connection. if self.apply_residual_connection_post_layernorm: residual = layernorm_output else: residual = layernorm_input out = torch.nn.functional.dropout(mlp_output, p=0.0, training=self.training) output = residual + out return output, kv_cache class GEBTransformer(torch.nn.Module): """Transformer class.""" def __init__(self, config: GEBConfig, device=None): super(GEBTransformer, self).__init__() self.fp32_residual_connection = config.fp32_residual_connection self.post_layer_norm = config.post_layer_norm self.num_layers = config.num_layers def build_layer(layer_number): return GEBBlock( config, layer_number, device=device) # Build the layers self.layers = [] for i in range(self.num_layers): layer_num = i + 1 self.layers.append(build_layer(layer_num)) self.layers = torch.nn.ModuleList(self.layers) if self.post_layer_norm: self.final_layernorm = RMSNorm(config.hidden_size, eps=config.layernorm_epsilon, device=device, dtype=config.torch_dtype) self.gradient_checkpointing = False def _get_layer(self, layer_number): return self.layers[layer_number] def forward( self, hidden_states, attention_mask, rotary_pos_emb, kv_caches=None, use_cache: Optional[bool] = True, output_hidden_states: Optional[bool] = False, ): if not kv_caches: kv_caches = [None for _ in range(self.num_layers)] presents = () if use_cache else None if self.gradient_checkpointing and self.training: if use_cache: logger.warning_once( "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." ) use_cache = False all_self_attentions = None all_hidden_states = () if output_hidden_states else None for index in range(self.num_layers): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) layer = self._get_layer(index) if self.gradient_checkpointing and self.training: layer_hidden = torch.utils.checkpoint.checkpoint( layer, hidden_states, attention_mask, rotary_pos_emb, kv_caches[index], use_cache ) else: layer_hidden = layer( hidden_states, attention_mask, rotary_pos_emb, kv_cache=kv_caches[index], use_cache=use_cache ) hidden_states, kv_cache = layer_hidden if use_cache: presents = presents + (kv_cache,) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if self.post_layer_norm: hidden_states = self.final_layernorm(hidden_states) return hidden_states, presents, all_hidden_states, all_self_attentions class GEBPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ is_parallelizable = False supports_gradient_checkpointing = True config_class = GEBConfig base_model_prefix = "transformer" _no_split_modules = ["GEBBlock"] def _init_weights(self, module: nn.Module): """Initialize the weights.""" return def get_masks(self, input_ids, past_key_values, padding_mask=None): batch_size, seq_length = input_ids.shape full_attention_mask = torch.ones(batch_size, seq_length, seq_length, device=input_ids.device) full_attention_mask.tril_() past_length = 0 if past_key_values: past_length = past_key_values[0][0].shape[0] if past_length: full_attention_mask = torch.cat((torch.ones(batch_size, seq_length, past_length, device=input_ids.device), full_attention_mask), dim=-1) if padding_mask is not None: full_attention_mask = full_attention_mask * padding_mask.unsqueeze(1) if not past_length and padding_mask is not None: full_attention_mask -= padding_mask.unsqueeze(-1) - 1 full_attention_mask = (full_attention_mask < 0.5).bool() full_attention_mask.unsqueeze_(1) return full_attention_mask def get_position_ids(self, input_ids, device): batch_size, seq_length = input_ids.shape position_ids = torch.arange(seq_length, dtype=torch.long, device=device).unsqueeze(0).repeat(batch_size, 1) return position_ids def _set_gradient_checkpointing(self, module, value=False): if isinstance(module, GEBTransformer): module.gradient_checkpointing = value class Embedding(torch.nn.Module): """Language model embeddings.""" def __init__(self, config: GEBConfig, device=None): super(Embedding, self).__init__() self.hidden_size = config.hidden_size # Word embeddings. self.word_embeddings = nn.Embedding( config.padded_vocab_size, self.hidden_size, dtype=config.torch_dtype, device=device ) self.fp32_residual_connection = config.fp32_residual_connection def forward(self, input_ids): # Embeddings. words_embeddings = self.word_embeddings(input_ids) embeddings = words_embeddings # Data format change to avoid explicit tranposes : [b s h] --> [s b h]. embeddings = embeddings.transpose(0, 1).contiguous() # If the input flag for fp32 residual connection is set, convert for float. if self.fp32_residual_connection: embeddings = embeddings.float() return embeddings class GEBModel(GEBPreTrainedModel): def __init__(self, config: GEBConfig, device=None, empty_init=True): super().__init__(config) if empty_init: init_method = skip_init else: init_method = default_init init_kwargs = {} if device is not None: init_kwargs["device"] = device self.embedding = init_method(Embedding, config, **init_kwargs) self.num_layers = config.num_layers self.num_key_value_groups = config.num_attention_heads // config.num_key_value_heads self.kv_channels = config.kv_channels # Rotary positional embeddings self.seq_length = config.seq_length rotary_dim = ( config.hidden_size // config.num_attention_heads if config.kv_channels is None else config.kv_channels ) # self.rotary_pos_emb = RotaryEmbedding(rotary_dim // 2, original_impl= True, device=device, # dtype=config.torch_dtype) self.rotary_pos_emb = RotaryEmbedding(rotary_dim) self.encoder = init_method(GEBTransformer, config, **init_kwargs) self.output_layer = init_method(nn.Linear, config.hidden_size, config.padded_vocab_size, bias=False, dtype=config.torch_dtype, **init_kwargs) self.pre_seq_len = config.pre_seq_len self.prefix_projection = config.prefix_projection if self.pre_seq_len is not None: for param in self.parameters(): param.requires_grad = False self.prefix_tokens = torch.arange(self.pre_seq_len).long() self.prefix_encoder = PrefixEncoder(config) self.dropout = torch.nn.Dropout(0.1) def get_input_embeddings(self): return self.embedding.word_embeddings def get_prompt(self, batch_size, device, dtype=torch.half): prefix_tokens = self.prefix_tokens.unsqueeze(0).expand(batch_size, -1).to(device) past_key_values = self.prefix_encoder(prefix_tokens).type(dtype) past_key_values = past_key_values.view( batch_size, self.pre_seq_len, self.num_layers * 2, self.num_key_value_groups, self.kv_channels ) # seq_len, b, nh, hidden_size past_key_values = self.dropout(past_key_values) past_key_values = past_key_values.permute([2, 1, 0, 3, 4]).split(2) return past_key_values def forward( self, input_ids, position_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.BoolTensor] = None, full_attention_mask: Optional[torch.BoolTensor] = None, past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None, inputs_embeds: Optional[torch.Tensor] = None, use_cache: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ): output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) use_cache = use_cache if use_cache is not None else self.config.use_cache return_dict = return_dict if return_dict is not None else self.config.use_return_dict batch_size, seq_length = input_ids.shape if inputs_embeds is None: inputs_embeds = self.embedding(input_ids) if self.pre_seq_len is not None: if past_key_values is None: past_key_values = self.get_prompt(batch_size=batch_size, device=input_ids.device, dtype=inputs_embeds.dtype) if attention_mask is not None: attention_mask = torch.cat([attention_mask.new_ones((batch_size, self.pre_seq_len)), attention_mask], dim=-1) if full_attention_mask is None: if (attention_mask is not None and not attention_mask.all()) or (past_key_values and seq_length != 1): full_attention_mask = self.get_masks(input_ids, past_key_values, padding_mask=attention_mask) # # Rotary positional embeddings # rotary_pos_emb = self.rotary_pos_emb(self.seq_length) # if position_ids is not None: # rotary_pos_emb = rotary_pos_emb[position_ids] # else: # rotary_pos_emb = rotary_pos_emb[None, :seq_length] # rotary_pos_emb = rotary_pos_emb.transpose(0, 1).contiguous() # Rotary positional embeddings # print(position_ids[0].tolist()) rotary_pos_emb = self.rotary_pos_emb(self.seq_length) rotary_pos_emb = rotary_pos_emb[position_ids[0].tolist()] # rotary_pos_emb = self.rotary_pos_emb(position_ids.shape[-1]) # # Rotary positional embeddings emb [seq_length, .., dim] no not need transpose # rotary_pos_emb = self.rotary_pos_emb(self.seq_length) # rotary_pos_emb = rotary_pos_emb.transpose(0, 1).contiguous() # print('rotary_pos_emb:', rotary_pos_emb.size()) # if position_ids is not None: # rotary_pos_emb = rotary_pos_emb[position_ids] # print('rotary_pos_emb:', rotary_pos_emb.size()) # else: # rotary_pos_emb = rotary_pos_emb[None, :seq_length] # # rotary_pos_emb = rotary_pos_emb.transpose(0, 1).contiguous() # Run encoder. hidden_states, presents, all_hidden_states, all_self_attentions = self.encoder( inputs_embeds, full_attention_mask, rotary_pos_emb=rotary_pos_emb, kv_caches=past_key_values, use_cache=use_cache, output_hidden_states=output_hidden_states ) if not return_dict: return tuple(v for v in [hidden_states, presents, all_hidden_states, all_self_attentions] if v is not None) return BaseModelOutputWithPast( last_hidden_state=hidden_states, past_key_values=presents, hidden_states=all_hidden_states, attentions=all_self_attentions, ) class GEBForCausalLM(GEBPreTrainedModel): def __init__(self, config: GEBConfig, empty_init=True, device=None): super().__init__(config) self.max_sequence_length = config.max_length self.transformer = GEBModel(config, empty_init=empty_init, device=device) self.config = config self.quantized = False # if self.config.quantization_bit: # self.quantize(self.config.quantization_bit, empty_init=True) def _update_model_kwargs_for_generation( self, outputs: ModelOutput, model_kwargs: Dict[str, Any], is_encoder_decoder: bool = False, standardize_cache_format: bool = False, ) -> Dict[str, Any]: # update past_key_values model_kwargs["past_key_values"] = self._extract_past_from_model_output( outputs, standardize_cache_format=standardize_cache_format ) # update attention mask if "attention_mask" in model_kwargs: attention_mask = model_kwargs["attention_mask"] model_kwargs["attention_mask"] = torch.cat( [attention_mask, attention_mask.new_ones((attention_mask.shape[0], 1))], dim=-1 ) # update position ids if "position_ids" in model_kwargs: position_ids = model_kwargs["position_ids"] new_position_id = position_ids[..., -1:].clone() new_position_id += 1 model_kwargs["position_ids"] = torch.cat( [position_ids, new_position_id], dim=-1 ) model_kwargs["is_first_forward"] = False return model_kwargs def prepare_inputs_for_generation( self, input_ids: torch.LongTensor, past_key_values: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, use_cache: Optional[bool] = None, is_first_forward: bool = True, **kwargs ) -> dict: # only last token for input_ids if past is not None if position_ids is None: position_ids = self.get_position_ids(input_ids, device=input_ids.device) if not is_first_forward: if past_key_values is not None: position_ids = position_ids[..., -1:] input_ids = input_ids[:, -1:] return { "input_ids": input_ids, "past_key_values": past_key_values, "position_ids": position_ids, "attention_mask": attention_mask, "return_last_logit": True, "use_cache": use_cache } def forward( self, input_ids: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, past_key_values: Optional[Tuple[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, return_last_logit: Optional[bool] = False, ): use_cache = use_cache if use_cache is not None else self.config.use_cache return_dict = return_dict if return_dict is not None else self.config.use_return_dict transformer_outputs = self.transformer( input_ids=input_ids, position_ids=position_ids, attention_mask=attention_mask, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = transformer_outputs[0] if return_last_logit: hidden_states = hidden_states[-1:] lm_logits = self.transformer.output_layer(hidden_states) lm_logits = lm_logits.transpose(0, 1).contiguous() loss = None if labels is not None: lm_logits = lm_logits.to(torch.float32) # Shift so that tokens < n predict n shift_logits = lm_logits[..., :-1, :].contiguous() shift_labels = labels[..., 1:].contiguous() # Flatten the tokens loss_fct = CrossEntropyLoss(ignore_index=-100) loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1)) lm_logits = lm_logits.to(hidden_states.dtype) loss = loss.to(hidden_states.dtype) if not return_dict: output = (lm_logits,) + transformer_outputs[1:] return ((loss,) + output) if loss is not None else output return CausalLMOutputWithPast( loss=loss, logits=lm_logits, past_key_values=transformer_outputs.past_key_values, hidden_states=transformer_outputs.hidden_states, attentions=transformer_outputs.attentions, ) @staticmethod def _reorder_cache( past: Tuple[Tuple[torch.Tensor, torch.Tensor], ...], beam_idx: torch.LongTensor ) -> Tuple[Tuple[torch.Tensor, torch.Tensor], ...]: """ This function is used to re-order the `past_key_values` cache if [`~PreTrainedModel.beam_search`] or [`~PreTrainedModel.beam_sample`] is called. This is required to match `past_key_values` with the correct beam_idx at every generation step. Output shares the same memory storage as `past`. """ return tuple( ( layer_past[0].index_select(1, beam_idx.to(layer_past[0].device)), layer_past[1].index_select(1, beam_idx.to(layer_past[1].device)), ) for layer_past in past ) def build_inputs(self, tokenizer, query: str, history: List[Tuple[str, str]] = None): prompt = tokenizer.build_prompt(query, history=history) tokens = [tokenizer.get_command("")] + tokenizer.encode(prompt) inputs = tokenizer.batch_encode_plus([tokens], return_tensors="pt", is_split_into_words=True) inputs = inputs.to(self.device) return inputs # def build_inputs(self, tokenizer, query: str, history: List[Tuple[str, str]] = None): # prompt = tokenizer.build_prompt(query, history=history) # inputs = tokenizer([prompt], return_tensors="pt") # # print(inputs) # inputs = inputs.to(self.device) # return inputs @torch.inference_mode() def chat(self, tokenizer, query: str, history: List[Tuple[str, str]] = None, max_length: int = 512, num_beams=1, do_sample=True, top_p=0.5, temperature=0.3, logits_processor=None, repetition_penalty = 1.15, **kwargs): if history is None: history = [] if logits_processor is None: logits_processor = LogitsProcessorList() logits_processor.append(InvalidScoreLogitsProcessor()) gen_kwargs = {"max_length": max_length, "num_beams": num_beams, "do_sample": do_sample, "top_p": top_p, "temperature": temperature, "logits_processor": logits_processor, "repetition_penalty":repetition_penalty, **kwargs} prompt = tokenizer.build_prompt(query, history=[]) system = "You are a helpful assistant.\n" system_ids = [ tokenizer.get_command("") ] + tokenizer.encode(text=system) + [ tokenizer.get_command("")] prompt_ids = [ tokenizer.get_command("") ] + tokenizer.encode( text=prompt, add_special_tokens=False ) + [ tokenizer.get_command("")] + [ tokenizer.get_command("")] tokens = system_ids + prompt_ids inputs = tokenizer.batch_encode_plus([tokens], return_tensors="pt", is_split_into_words=True) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") inputs = inputs.to(device) outputs = self.generate(**inputs, **gen_kwargs) outputs = outputs.tolist()[0][len(inputs["input_ids"][0]):] response = tokenizer.decode(outputs) return response, history