--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: biolinkbert-base-medqa-usmle-MPNet-context results: [] --- # biolinkbert-base-medqa-usmle-MPNet-context This model is a fine-tuned version of [michiyasunaga/BioLinkBERT-base](https://huggingface.co/michiyasunaga/BioLinkBERT-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.4506 - Accuracy: 0.3936 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 318 | 1.3518 | 0.3354 | | 1.3648 | 2.0 | 636 | 1.3308 | 0.3684 | | 1.3648 | 3.0 | 954 | 1.3267 | 0.3943 | | 1.2711 | 4.0 | 1272 | 1.3455 | 0.3865 | | 1.1769 | 5.0 | 1590 | 1.3739 | 0.3943 | | 1.1769 | 6.0 | 1908 | 1.3960 | 0.4069 | | 1.0815 | 7.0 | 2226 | 1.4320 | 0.3959 | | 1.0092 | 8.0 | 2544 | 1.4506 | 0.3936 | ### Framework versions - Transformers 4.27.2 - Pytorch 1.13.1+cu116 - Datasets 2.10.1 - Tokenizers 0.13.2