--- library_name: setfit tags: - setfit - absa - sentence-transformers - text-classification - generated_from_setfit_trainer metrics: - accuracy widget: - text: penambahan jumlah max resin:update qol loadout artefak, skip story, ringkasan story jika di skip, dan penambahan jumlah max resin mana min game udah 3 tahun gini gini aja gak ada perkembangan. apalagi hadiah untuk pemain selama 3 tahun tidak ada peningkatan - text: dialognya:adain fitur skip dialog gak penting , capek tangan mencetin layar doang , mana panjang , dialognya juga ga nyambung sama cerita aslinya ini - text: anak anak:istilah game kikir itu emang benar sih buat game ini, parah ngabisin waktu disuruh nguli trosss hadiah gak seberapa, event gede kecil sama aja reward dikit, bukannya gak bersyukur...tapi lu nya aja yg pelit. tidak ramah untuk player anak anak yang uang jajannya dikit, dikira anak anak pada kerja semua orang dewasa yang kerja aja gaji gak sampe buat topup segitu, minimal beri reward yang lumayan lah jangan kecil kecil mulu, dikira gacha itu murah... sekian terima kasih kikir impact - text: perubahan:jujur game nya bagus. grafik mantap. story lumayan. tapi developernya kikir ama buta tuli terhadap komunitasnya. tidak ada perubahan dalam segi quality of life dalam 3 tahun. ada beberapa qol yang di implementasi tapi kesanya tidak berguna. ada masalah dengan game dan kita kritik dev jadi tuli bisu bahkan buta. reward anniversary dan lantern rite juga sama selama 3 tahun. gak ada perubahan. percuma ngasih survey kepuasan tiap akhir patch kalau cman buat formalitas. - text: tulisan jaringan:tidak bisa login padahal jaringan bagus paket data juga masih banyak, dan dilayar ada tulisan jaringan error, selama saya masih gabisa login dan main saya bakal tetap kasih bintang 1 pipeline_tag: text-classification inference: false --- # SetFit Aspect Model This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Aspect Based Sentiment Analysis (ABSA). A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. In particular, this model is in charge of filtering aspect span candidates. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. This model was trained within the context of a larger system for ABSA, which looks like so: 1. Use a spaCy model to select possible aspect span candidates. 2. **Use this SetFit model to filter these possible aspect span candidates.** 3. Use a SetFit model to classify the filtered aspect span candidates. ## Model Details ### Model Description - **Model Type:** SetFit - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance - **spaCy Model:** id_core_news_trf - **SetFitABSA Aspect Model:** [Funnyworld1412/ABSA_review_game_genshin-aspect](https://huggingface.co/Funnyworld1412/ABSA_review_game_genshin-aspect) - **SetFitABSA Polarity Model:** [Funnyworld1412/ABSA_review_game_genshin-polarity](https://huggingface.co/Funnyworld1412/ABSA_review_game_genshin-polarity) - **Maximum Sequence Length:** 512 tokens - **Number of Classes:** 2 classes ### Model Sources - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) ### Model Labels | Label | Examples | |:----------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | aspect | | | no aspect | | ## Uses ### Direct Use for Inference First install the SetFit library: ```bash pip install setfit ``` Then you can load this model and run inference. ```python from setfit import AbsaModel # Download from the 🤗 Hub model = AbsaModel.from_pretrained( "Funnyworld1412/ABSA_review_game_genshin-aspect", "Funnyworld1412/ABSA_review_game_genshin-polarity", ) # Run inference preds = model("The food was great, but the venue is just way too busy.") ``` ## Training Details ### Training Set Metrics | Training set | Min | Median | Max | |:-------------|:----|:--------|:----| | Word count | 4 | 49.9079 | 94 | | Label | Training Sample Count | |:----------|:----------------------| | no aspect | 2281 | | aspect | 477 | ### Training Hyperparameters - batch_size: (4, 4) - num_epochs: (1, 1) - max_steps: -1 - sampling_strategy: oversampling - num_iterations: 10 - body_learning_rate: (2e-05, 1e-05) - head_learning_rate: 0.01 - loss: CosineSimilarityLoss - distance_metric: cosine_distance - margin: 0.25 - end_to_end: False - use_amp: False - warmup_proportion: 0.1 - seed: 42 - eval_max_steps: -1 - load_best_model_at_end: False ### Training Results | Epoch | Step | Training Loss | Validation Loss | |:------:|:-----:|:-------------:|:---------------:| | 0.0001 | 1 | 0.25 | - | | 0.0036 | 50 | 0.331 | - | | 0.0073 | 100 | 0.5002 | - | | 0.0109 | 150 | 0.2904 | - | | 0.0145 | 200 | 0.3791 | - | | 0.0181 | 250 | 0.2253 | - | | 0.0218 | 300 | 0.1909 | - | | 0.0254 | 350 | 0.2504 | - | | 0.0290 | 400 | 0.1241 | - | | 0.0326 | 450 | 0.1021 | - | | 0.0363 | 500 | 0.0985 | - | | 0.0399 | 550 | 0.3831 | - | | 0.0435 | 600 | 0.1841 | - | | 0.0471 | 650 | 0.2487 | - | | 0.0508 | 700 | 0.1573 | - | | 0.0544 | 750 | 0.0499 | - | | 0.0580 | 800 | 0.2214 | - | | 0.0616 | 850 | 0.1427 | - | | 0.0653 | 900 | 0.3544 | - | | 0.0689 | 950 | 0.042 | - | | 0.0725 | 1000 | 0.2918 | - | | 0.0761 | 1050 | 0.0134 | - | | 0.0798 | 1100 | 0.1933 | - | | 0.0834 | 1150 | 0.0115 | - | | 0.0870 | 1200 | 0.2393 | - | | 0.0906 | 1250 | 0.2625 | - | | 0.0943 | 1300 | 0.1496 | - | | 0.0979 | 1350 | 0.1417 | - | | 0.1015 | 1400 | 0.2111 | - | | 0.1051 | 1450 | 0.2158 | - | | 0.1088 | 1500 | 0.1378 | - | | 0.1124 | 1550 | 0.0988 | - | | 0.1160 | 1600 | 0.1183 | - | | 0.1197 | 1650 | 0.324 | - | | 0.1233 | 1700 | 0.3722 | - | | 0.1269 | 1750 | 0.1696 | - | | 0.1305 | 1800 | 0.2893 | - | | 0.1342 | 1850 | 0.198 | - | | 0.1378 | 1900 | 0.2854 | - | | 0.1414 | 1950 | 0.3339 | - | | 0.1450 | 2000 | 0.0783 | - | | 0.1487 | 2050 | 0.014 | - | | 0.1523 | 2100 | 0.0205 | - | | 0.1559 | 2150 | 0.0151 | - | | 0.1595 | 2200 | 0.3783 | - | | 0.1632 | 2250 | 0.381 | - | | 0.1668 | 2300 | 0.144 | - | | 0.1704 | 2350 | 0.0023 | - | | 0.1740 | 2400 | 0.1903 | - | | 0.1777 | 2450 | 0.0033 | - | | 0.1813 | 2500 | 0.0039 | - | | 0.1849 | 2550 | 0.0019 | - | | 0.1885 | 2600 | 0.0565 | - | | 0.1922 | 2650 | 0.1551 | - | | 0.1958 | 2700 | 0.0729 | - | | 0.1994 | 2750 | 0.0272 | - | | 0.2030 | 2800 | 0.495 | - | | 0.2067 | 2850 | 0.0396 | - | | 0.2103 | 2900 | 0.2288 | - | | 0.2139 | 2950 | 0.0077 | - | | 0.2175 | 3000 | 0.0642 | - | | 0.2212 | 3050 | 0.0037 | - | | 0.2248 | 3100 | 0.2447 | - | | 0.2284 | 3150 | 0.0097 | - | | 0.2321 | 3200 | 0.0011 | - | | 0.2357 | 3250 | 0.1254 | - | | 0.2393 | 3300 | 0.0046 | - | | 0.2429 | 3350 | 0.0127 | - | | 0.2466 | 3400 | 0.0093 | - | | 0.2502 | 3450 | 0.0005 | - | | 0.2538 | 3500 | 0.0022 | - | | 0.2574 | 3550 | 0.0005 | - | | 0.2611 | 3600 | 0.0002 | - | | 0.2647 | 3650 | 0.0231 | - | | 0.2683 | 3700 | 0.0016 | - | | 0.2719 | 3750 | 0.1945 | - | | 0.2756 | 3800 | 0.002 | - | | 0.2792 | 3850 | 0.0235 | - | | 0.2828 | 3900 | 0.006 | - | | 0.2864 | 3950 | 0.0003 | - | | 0.2901 | 4000 | 0.007 | - | | 0.2937 | 4050 | 0.0227 | - | | 0.2973 | 4100 | 0.1794 | - | | 0.3009 | 4150 | 0.2629 | - | | 0.3046 | 4200 | 0.3005 | - | | 0.3082 | 4250 | 0.1974 | - | | 0.3118 | 4300 | 0.001 | - | | 0.3154 | 4350 | 0.0123 | - | | 0.3191 | 4400 | 0.0027 | - | | 0.3227 | 4450 | 0.0002 | - | | 0.3263 | 4500 | 0.0005 | - | | 0.3299 | 4550 | 0.0002 | - | | 0.3336 | 4600 | 0.0007 | - | | 0.3372 | 4650 | 0.0332 | - | | 0.3408 | 4700 | 0.052 | - | | 0.3445 | 4750 | 0.0103 | - | | 0.3481 | 4800 | 0.0067 | - | | 0.3517 | 4850 | 0.0003 | - | | 0.3553 | 4900 | 0.0008 | - | | 0.3590 | 4950 | 0.0088 | - | | 0.3626 | 5000 | 0.0002 | - | | 0.3662 | 5050 | 0.0111 | - | | 0.3698 | 5100 | 0.0836 | - | | 0.3735 | 5150 | 0.0001 | - | | 0.3771 | 5200 | 0.2398 | - | | 0.3807 | 5250 | 0.0002 | - | | 0.3843 | 5300 | 0.1435 | - | | 0.3880 | 5350 | 0.0001 | - | | 0.3916 | 5400 | 0.0296 | - | | 0.3952 | 5450 | 0.0003 | - | | 0.3988 | 5500 | 0.1126 | - | | 0.4025 | 5550 | 0.0009 | - | | 0.4061 | 5600 | 0.0055 | - | | 0.4097 | 5650 | 0.0031 | - | | 0.4133 | 5700 | 0.1929 | - | | 0.4170 | 5750 | 0.0002 | - | | 0.4206 | 5800 | 0.2565 | - | | 0.4242 | 5850 | 0.0002 | - | | 0.4278 | 5900 | 0.0033 | - | | 0.4315 | 5950 | 0.0011 | - | | 0.4351 | 6000 | 0.0001 | - | | 0.4387 | 6050 | 0.0004 | - | | 0.4423 | 6100 | 0.0003 | - | | 0.4460 | 6150 | 0.1076 | - | | 0.4496 | 6200 | 0.0011 | - | | 0.4532 | 6250 | 0.0034 | - | | 0.4569 | 6300 | 0.0176 | - | | 0.4605 | 6350 | 0.2883 | - | | 0.4641 | 6400 | 0.0 | - | | 0.4677 | 6450 | 0.0172 | - | | 0.4714 | 6500 | 0.0014 | - | | 0.4750 | 6550 | 0.0571 | - | | 0.4786 | 6600 | 0.0287 | - | | 0.4822 | 6650 | 0.1461 | - | | 0.4859 | 6700 | 0.2333 | - | | 0.4895 | 6750 | 0.1468 | - | | 0.4931 | 6800 | 0.0005 | - | | 0.4967 | 6850 | 0.0039 | - | | 0.5004 | 6900 | 0.0004 | - | | 0.5040 | 6950 | 0.0008 | - | | 0.5076 | 7000 | 0.0004 | - | | 0.5112 | 7050 | 0.0005 | - | | 0.5149 | 7100 | 0.001 | - | | 0.5185 | 7150 | 0.0041 | - | | 0.5221 | 7200 | 0.0157 | - | | 0.5257 | 7250 | 0.0228 | - | | 0.5294 | 7300 | 0.0002 | - | | 0.5330 | 7350 | 0.0004 | - | | 0.5366 | 7400 | 0.0081 | - | | 0.5402 | 7450 | 0.0004 | - | | 0.5439 | 7500 | 0.1227 | - | | 0.5475 | 7550 | 0.0001 | - | | 0.5511 | 7600 | 0.0006 | - | | 0.5547 | 7650 | 0.0003 | - | | 0.5584 | 7700 | 0.0475 | - | | 0.5620 | 7750 | 0.1848 | - | | 0.5656 | 7800 | 0.0007 | - | | 0.5693 | 7850 | 0.001 | - | | 0.5729 | 7900 | 0.0002 | - | | 0.5765 | 7950 | 0.0018 | - | | 0.5801 | 8000 | 0.0009 | - | | 0.5838 | 8050 | 0.0019 | - | | 0.5874 | 8100 | 0.0001 | - | | 0.5910 | 8150 | 0.0012 | - | | 0.5946 | 8200 | 0.0536 | - | | 0.5983 | 8250 | 0.0943 | - | | 0.6019 | 8300 | 0.006 | - | | 0.6055 | 8350 | 0.0019 | - | | 0.6091 | 8400 | 0.0 | - | | 0.6128 | 8450 | 0.0004 | - | | 0.6164 | 8500 | 0.0 | - | | 0.6200 | 8550 | 0.2588 | - | | 0.6236 | 8600 | 0.0001 | - | | 0.6273 | 8650 | 0.0084 | - | | 0.6309 | 8700 | 0.0001 | - | | 0.6345 | 8750 | 0.4123 | - | | 0.6381 | 8800 | 0.073 | - | | 0.6418 | 8850 | 0.0 | - | | 0.6454 | 8900 | 0.1361 | - | | 0.6490 | 8950 | 0.0249 | - | | 0.6526 | 9000 | 0.0003 | - | | 0.6563 | 9050 | 0.0018 | - | | 0.6599 | 9100 | 0.0115 | - | | 0.6635 | 9150 | 0.1789 | - | | 0.6672 | 9200 | 0.0001 | - | | 0.6708 | 9250 | 0.0006 | - | | 0.6744 | 9300 | 0.002 | - | | 0.6780 | 9350 | 0.0 | - | | 0.6817 | 9400 | 0.0042 | - | | 0.6853 | 9450 | 0.0003 | - | | 0.6889 | 9500 | 0.0105 | - | | 0.6925 | 9550 | 0.0 | - | | 0.6962 | 9600 | 0.0285 | - | | 0.6998 | 9650 | 0.0002 | - | | 0.7034 | 9700 | 0.0 | - | | 0.7070 | 9750 | 0.001 | - | | 0.7107 | 9800 | 0.0641 | - | | 0.7143 | 9850 | 0.0096 | - | | 0.7179 | 9900 | 0.0001 | - | | 0.7215 | 9950 | 0.0003 | - | | 0.7252 | 10000 | 0.3666 | - | | 0.7288 | 10050 | 0.0001 | - | | 0.7324 | 10100 | 0.0001 | - | | 0.7360 | 10150 | 0.0001 | - | | 0.7397 | 10200 | 0.2526 | - | | 0.7433 | 10250 | 0.0286 | - | | 0.7469 | 10300 | 0.0001 | - | | 0.7505 | 10350 | 0.004 | - | | 0.7542 | 10400 | 0.0 | - | | 0.7578 | 10450 | 0.0237 | - | | 0.7614 | 10500 | 0.0012 | - | | 0.7650 | 10550 | 0.0001 | - | | 0.7687 | 10600 | 0.0223 | - | | 0.7723 | 10650 | 0.0349 | - | | 0.7759 | 10700 | 0.033 | - | | 0.7796 | 10750 | 0.0005 | - | | 0.7832 | 10800 | 0.0001 | - | | 0.7868 | 10850 | 0.0001 | - | | 0.7904 | 10900 | 0.0002 | - | | 0.7941 | 10950 | 0.0005 | - | | 0.7977 | 11000 | 0.0003 | - | | 0.8013 | 11050 | 0.0 | - | | 0.8049 | 11100 | 0.0348 | - | | 0.8086 | 11150 | 0.0 | - | | 0.8122 | 11200 | 0.0001 | - | | 0.8158 | 11250 | 0.0 | - | | 0.8194 | 11300 | 0.0 | - | | 0.8231 | 11350 | 0.0 | - | | 0.8267 | 11400 | 0.0002 | - | | 0.8303 | 11450 | 0.0002 | - | | 0.8339 | 11500 | 0.0112 | - | | 0.8376 | 11550 | 0.0099 | - | | 0.8412 | 11600 | 0.0 | - | | 0.8448 | 11650 | 0.0 | - | | 0.8484 | 11700 | 0.045 | - | | 0.8521 | 11750 | 0.138 | - | | 0.8557 | 11800 | 0.0283 | - | | 0.8593 | 11850 | 0.0001 | - | | 0.8629 | 11900 | 0.0 | - | | 0.8666 | 11950 | 0.0751 | - | | 0.8702 | 12000 | 0.0002 | - | | 0.8738 | 12050 | 0.0 | - | | 0.8774 | 12100 | 0.0001 | - | | 0.8811 | 12150 | 0.0948 | - | | 0.8847 | 12200 | 0.0896 | - | | 0.8883 | 12250 | 0.1255 | - | | 0.8920 | 12300 | 0.0001 | - | | 0.8956 | 12350 | 0.0 | - | | 0.8992 | 12400 | 0.1456 | - | | 0.9028 | 12450 | 0.0079 | - | | 0.9065 | 12500 | 0.0 | - | | 0.9101 | 12550 | 0.0 | - | | 0.9137 | 12600 | 0.0002 | - | | 0.9173 | 12650 | 0.0047 | - | | 0.9210 | 12700 | 0.1701 | - | | 0.9246 | 12750 | 0.0423 | - | | 0.9282 | 12800 | 0.0001 | - | | 0.9318 | 12850 | 0.0969 | - | | 0.9355 | 12900 | 0.0001 | - | | 0.9391 | 12950 | 0.0 | - | | 0.9427 | 13000 | 0.0 | - | | 0.9463 | 13050 | 0.0301 | - | | 0.9500 | 13100 | 0.0066 | - | | 0.9536 | 13150 | 0.0 | - | | 0.9572 | 13200 | 0.0 | - | | 0.9608 | 13250 | 0.0 | - | | 0.9645 | 13300 | 0.0 | - | | 0.9681 | 13350 | 0.0008 | - | | 0.9717 | 13400 | 0.0255 | - | | 0.9753 | 13450 | 0.0 | - | | 0.9790 | 13500 | 0.0908 | - | | 0.9826 | 13550 | 0.0826 | - | | 0.9862 | 13600 | 0.0 | - | | 0.9898 | 13650 | 0.0247 | - | | 0.9935 | 13700 | 0.0 | - | | 0.9971 | 13750 | 0.0546 | - | ### Framework Versions - Python: 3.10.13 - SetFit: 1.0.3 - Sentence Transformers: 3.0.1 - spaCy: 3.7.5 - Transformers: 4.36.2 - PyTorch: 2.1.2 - Datasets: 2.19.2 - Tokenizers: 0.15.2 ## Citation ### BibTeX ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```