--- library_name: peft base_model: openai/whisper-large-v3 --- # Model Card for Model ID As of our knowledge SOTA in swiss german with wer=14.269151618793657 and normalized_wer=12.800897299473698. ## Model Details Trained on RTX 3070 for 30 hours using SwissDial all Dialects with following guide: https://github.com/Vaibhavs10/fast-whisper-finetuning/blob/main/Whisper_w_PEFT.ipynb ### Model Description - **Developed by:** Flurin17 - **Language(s) (NLP):** swiss-german - **License:** IDK ask openai - **Finetuned from model [optional]:** openai/whisper-large-v3 ### Model Sources [optional] ## Uses ``` model_name_or_path = "openai/whisper-large-v3" task = "transcribe" import json import os from transformers import WhisperFeatureExtractor from transformers import WhisperTokenizer feature_extractor = WhisperFeatureExtractor.from_pretrained(model_name_or_path) tokenizer = WhisperTokenizer.from_pretrained(model_name_or_path, task=task) from peft import PeftModel, PeftConfig from transformers import WhisperForConditionalGeneration, Seq2SeqTrainer peft_model_id = "flurin17/whisper-large-v3-peft-swiss-german" # Use the same model ID as before. peft_config = PeftConfig.from_pretrained(peft_model_id) model = WhisperForConditionalGeneration.from_pretrained( peft_config.base_model_name_or_path, load_in_8bit=True, device_map="auto" ) model = PeftModel.from_pretrained(model, peft_model_id) model.config.use_cache = True from transformers import AutomaticSpeechRecognitionPipeline import torch pipe = AutomaticSpeechRecognitionPipeline(model=model, tokenizer=tokenizer, feature_extractor=feature_extractor) with torch.cuda.amp.autocast(): result = pipe(r"L:\random\audio.mp3", generate_kwargs={"language": "german"}) print(result["text"]) ``` ### Framework versions - PEFT 0.7.1