--- base_model: Aculi/Tinyllama-2B library_name: peft tags: - generated_from_trainer model-index: - name: outputs/thinking-tiny-llama results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml base_model: Aculi/Tinyllama-2B model_type: LlamaForCausalLM tokenizer_type: LlamaTokenizer load_in_8bit: false load_in_4bit: true strict: false datasets: - path: ./datas/1.json type: alpaca - path: ./datas/2.json type: alpaca dataset_prepared_path: val_set_size: 0.05 output_dir: ./outputs/thinking-tiny-llama adapter: qlora lora_model_dir: sequence_len: 4096 sample_packing: true eval_sample_packing: false pad_to_sequence_len: true lora_r: 32 lora_alpha: 16 lora_dropout: 0.05 lora_target_modules: lora_target_linear: true lora_fan_in_fan_out: wandb_project: wandb_entity: wandb_watch: wandb_name: wandb_log_model: gradient_accumulation_steps: 4 micro_batch_size: 2 num_epochs: 4 optimizer: paged_adamw_32bit lr_scheduler: cosine learning_rate: 0.0002 train_on_inputs: false group_by_length: false bf16: auto fp16: tf32: false gradient_checkpointing: true early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: false flash_attention: true warmup_steps: 10 evals_per_epoch: 2 saves_per_epoch: 2 debug: deepspeed: weight_decay: 0.0 fsdp: fsdp_config: special_tokens: ```

# outputs/thinking-tiny-llama This model is a fine-tuned version of [Aculi/Tinyllama-2B](https://huggingface.co/Aculi/Tinyllama-2B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.0222 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.5625 | 0.0013 | 1 | 1.5692 | | 1.1161 | 0.5002 | 400 | 1.0995 | | 1.0509 | 1.0003 | 800 | 1.0633 | | 1.0665 | 1.4867 | 1200 | 1.0422 | | 1.012 | 1.9869 | 1600 | 1.0287 | | 1.0124 | 2.4733 | 2000 | 1.0250 | | 0.8544 | 2.9734 | 2400 | 1.0212 | | 0.9435 | 3.4605 | 2800 | 1.0222 | ### Framework versions - PEFT 0.11.1 - Transformers 4.43.1 - Pytorch 2.3.1+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1