--- base_model: concedo/KobbleTinyV2-1.1B library_name: peft license: apache-2.0 tags: - generated_from_trainer model-index: - name: outputs/32r results: [] --- [Built with Axolotl](https://github.com/OpenAccess-AI-Collective/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml base_model: concedo/KobbleTinyV2-1.1B model_type: LlamaForCausalLM tokenizer_type: LlamaTokenizer load_in_8bit: false load_in_4bit: true strict: false datasets: - path: NobodyExistsOnTheInternet/AlpacaToxicQA type: alpaca - path: Fischerboot/freedom-rp-alpaca-shortend type: alpaca dataset_prepared_path: val_set_size: 0.05 output_dir: ./outputs/32r adapter: qlora lora_model_dir: sequence_len: 4096 sample_packing: true eval_sample_packing: false pad_to_sequence_len: true lora_r: 32 lora_alpha: 16 lora_dropout: 0.05 lora_target_modules: lora_target_linear: true lora_fan_in_fan_out: wandb_project: wandb_entity: wandb_watch: wandb_name: wandb_log_model: gradient_accumulation_steps: 4 micro_batch_size: 2 num_epochs: 4 optimizer: paged_adamw_32bit lr_scheduler: cosine learning_rate: 0.0002 train_on_inputs: false group_by_length: false bf16: auto fp16: tf32: false gradient_checkpointing: true early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true warmup_steps: 10 evals_per_epoch: 4 saves_per_epoch: 1 debug: deepspeed: weight_decay: 0.0 fsdp: fsdp_config: special_tokens: ```

# outputs/32r This model is a fine-tuned version of [concedo/KobbleTinyV2-1.1B](https://huggingface.co/concedo/KobbleTinyV2-1.1B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.3368 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.9821 | 0.0034 | 1 | 1.8932 | | 1.6851 | 0.2517 | 73 | 1.5089 | | 1.4335 | 0.5034 | 146 | 1.4387 | | 1.3165 | 0.7552 | 219 | 1.4085 | | 2.0848 | 1.0069 | 292 | 1.3896 | | 1.3564 | 1.2379 | 365 | 1.3757 | | 1.2587 | 1.4897 | 438 | 1.3640 | | 1.2955 | 1.7414 | 511 | 1.3552 | | 1.4962 | 1.9931 | 584 | 1.3487 | | 1.3458 | 2.2284 | 657 | 1.3455 | | 1.301 | 2.4802 | 730 | 1.3413 | | 1.2458 | 2.7319 | 803 | 1.3389 | | 1.1965 | 2.9836 | 876 | 1.3367 | | 1.4968 | 3.2172 | 949 | 1.3369 | | 1.2504 | 3.4690 | 1022 | 1.3368 | | 1.5103 | 3.7207 | 1095 | 1.3368 | ### Framework versions - PEFT 0.11.1 - Transformers 4.42.3 - Pytorch 2.1.2+cu118 - Datasets 2.19.1 - Tokenizers 0.19.1