---
base_model: concedo/KobbleTinyV2-1.1B
library_name: peft
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: outputs/32r
results: []
---
[](https://github.com/OpenAccess-AI-Collective/axolotl)
See axolotl config
axolotl version: `0.4.1`
```yaml
base_model: concedo/KobbleTinyV2-1.1B
model_type: LlamaForCausalLM
tokenizer_type: LlamaTokenizer
load_in_8bit: false
load_in_4bit: true
strict: false
datasets:
- path: NobodyExistsOnTheInternet/AlpacaToxicQA
type: alpaca
- path: Fischerboot/freedom-rp-alpaca-shortend
type: alpaca
dataset_prepared_path:
val_set_size: 0.05
output_dir: ./outputs/32r
adapter: qlora
lora_model_dir:
sequence_len: 4096
sample_packing: true
eval_sample_packing: false
pad_to_sequence_len: true
lora_r: 32
lora_alpha: 16
lora_dropout: 0.05
lora_target_modules:
lora_target_linear: true
lora_fan_in_fan_out:
wandb_project:
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:
gradient_accumulation_steps: 4
micro_batch_size: 2
num_epochs: 4
optimizer: paged_adamw_32bit
lr_scheduler: cosine
learning_rate: 0.0002
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_steps: 10
evals_per_epoch: 4
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
```
# outputs/32r
This model is a fine-tuned version of [concedo/KobbleTinyV2-1.1B](https://huggingface.co/concedo/KobbleTinyV2-1.1B) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.3368
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 4
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 1.9821 | 0.0034 | 1 | 1.8932 |
| 1.6851 | 0.2517 | 73 | 1.5089 |
| 1.4335 | 0.5034 | 146 | 1.4387 |
| 1.3165 | 0.7552 | 219 | 1.4085 |
| 2.0848 | 1.0069 | 292 | 1.3896 |
| 1.3564 | 1.2379 | 365 | 1.3757 |
| 1.2587 | 1.4897 | 438 | 1.3640 |
| 1.2955 | 1.7414 | 511 | 1.3552 |
| 1.4962 | 1.9931 | 584 | 1.3487 |
| 1.3458 | 2.2284 | 657 | 1.3455 |
| 1.301 | 2.4802 | 730 | 1.3413 |
| 1.2458 | 2.7319 | 803 | 1.3389 |
| 1.1965 | 2.9836 | 876 | 1.3367 |
| 1.4968 | 3.2172 | 949 | 1.3369 |
| 1.2504 | 3.4690 | 1022 | 1.3368 |
| 1.5103 | 3.7207 | 1095 | 1.3368 |
### Framework versions
- PEFT 0.11.1
- Transformers 4.42.3
- Pytorch 2.1.2+cu118
- Datasets 2.19.1
- Tokenizers 0.19.1