#!/usr/bin/env python # coding=utf-8 # Copyright (c) 2022 Erik Linder-Norén and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions. import torch.nn as nn import torch.nn.functional as F import torch from huggan.pytorch.huggan_mixin import HugGANModelHubMixin def weights_init_normal(m): classname = m.__class__.__name__ if classname.find("Conv") != -1: torch.nn.init.normal_(m.weight.data, 0.0, 0.02) elif classname.find("BatchNorm2d") != -1: torch.nn.init.normal_(m.weight.data, 1.0, 0.02) torch.nn.init.constant_(m.bias.data, 0.0) ############################## # U-NET ############################## class UNetDown(nn.Module): def __init__(self, in_size, out_size, normalize=True, dropout=0.0): super(UNetDown, self).__init__() layers = [nn.Conv2d(in_size, out_size, 4, 2, 1, bias=False)] if normalize: layers.append(nn.InstanceNorm2d(out_size)) layers.append(nn.LeakyReLU(0.2)) if dropout: layers.append(nn.Dropout(dropout)) self.model = nn.Sequential(*layers) def forward(self, x): return self.model(x) class UNetUp(nn.Module): def __init__(self, in_size, out_size, dropout=0.0): super(UNetUp, self).__init__() layers = [ nn.ConvTranspose2d(in_size, out_size, 4, 2, 1, bias=False), nn.InstanceNorm2d(out_size), nn.ReLU(inplace=True), ] if dropout: layers.append(nn.Dropout(dropout)) self.model = nn.Sequential(*layers) def forward(self, x, skip_input): x = self.model(x) x = torch.cat((x, skip_input), 1) return x class GeneratorUNet(nn.Module, HugGANModelHubMixin): def __init__(self, in_channels=3, out_channels=3): super(GeneratorUNet, self).__init__() self.down1 = UNetDown(in_channels, 64, normalize=False) self.down2 = UNetDown(64, 128) self.down3 = UNetDown(128, 256) self.down4 = UNetDown(256, 512, dropout=0.5) self.down5 = UNetDown(512, 512, dropout=0.5) self.down6 = UNetDown(512, 512, dropout=0.5) self.down7 = UNetDown(512, 512, dropout=0.5) self.down8 = UNetDown(512, 512, normalize=False, dropout=0.5) self.up1 = UNetUp(512, 512, dropout=0.5) self.up2 = UNetUp(1024, 512, dropout=0.5) self.up3 = UNetUp(1024, 512, dropout=0.5) self.up4 = UNetUp(1024, 512, dropout=0.5) self.up5 = UNetUp(1024, 256) self.up6 = UNetUp(512, 128) self.up7 = UNetUp(256, 64) self.final = nn.Sequential( nn.Upsample(scale_factor=2), nn.ZeroPad2d((1, 0, 1, 0)), nn.Conv2d(128, out_channels, 4, padding=1), nn.Tanh(), ) def forward(self, x): # U-Net generator with skip connections from encoder to decoder d1 = self.down1(x) d2 = self.down2(d1) d3 = self.down3(d2) d4 = self.down4(d3) d5 = self.down5(d4) d6 = self.down6(d5) d7 = self.down7(d6) d8 = self.down8(d7) u1 = self.up1(d8, d7) u2 = self.up2(u1, d6) u3 = self.up3(u2, d5) u4 = self.up4(u3, d4) u5 = self.up5(u4, d3) u6 = self.up6(u5, d2) u7 = self.up7(u6, d1) return self.final(u7) ############################## # Discriminator ############################## class Discriminator(nn.Module): def __init__(self, in_channels=3): super(Discriminator, self).__init__() def discriminator_block(in_filters, out_filters, normalization=True): """Returns downsampling layers of each discriminator block""" layers = [nn.Conv2d(in_filters, out_filters, 4, stride=2, padding=1)] if normalization: layers.append(nn.InstanceNorm2d(out_filters)) layers.append(nn.LeakyReLU(0.2, inplace=True)) return layers self.model = nn.Sequential( *discriminator_block(in_channels * 2, 64, normalization=False), *discriminator_block(64, 128), *discriminator_block(128, 256), *discriminator_block(256, 512), nn.ZeroPad2d((1, 0, 1, 0)), nn.Conv2d(512, 1, 4, padding=1, bias=False) ) def forward(self, img_A, img_B): # Concatenate image and condition image by channels to produce input img_input = torch.cat((img_A, img_B), 1) return self.model(img_input)