import random import torch import torch.nn.functional as F def DiffAugment(x, types=[]): for p in types: for f in AUGMENT_FNS[p]: x = f(x) return x.contiguous() # """ # Augmentation functions got images as `x` # where `x` is tensor with this dimensions: # 0 - count of images # 1 - channels # 2 - width # 3 - height of image # """ def rand_brightness(x): x = x + (torch.rand(x.size(0), 1, 1, 1, dtype=x.dtype, device=x.device) - 0.5) return x def rand_saturation(x): x_mean = x.mean(dim=1, keepdim=True) x = (x - x_mean) * (torch.rand(x.size(0), 1, 1, 1, dtype=x.dtype, device=x.device) * 2) + x_mean return x def rand_contrast(x): x_mean = x.mean(dim=[1, 2, 3], keepdim=True) x = (x - x_mean) * (torch.rand(x.size(0), 1, 1, 1, dtype=x.dtype, device=x.device) + 0.5) + x_mean return x def rand_translation(x, ratio=0.125): shift_x, shift_y = int(x.size(2) * ratio + 0.5), int(x.size(3) * ratio + 0.5) translation_x = torch.randint(-shift_x, shift_x + 1, size=[x.size(0), 1, 1], device=x.device) translation_y = torch.randint(-shift_y, shift_y + 1, size=[x.size(0), 1, 1], device=x.device) grid_batch, grid_x, grid_y = torch.meshgrid( torch.arange(x.size(0), dtype=torch.long, device=x.device), torch.arange(x.size(2), dtype=torch.long, device=x.device), torch.arange(x.size(3), dtype=torch.long, device=x.device), indexing = 'ij') grid_x = torch.clamp(grid_x + translation_x + 1, 0, x.size(2) + 1) grid_y = torch.clamp(grid_y + translation_y + 1, 0, x.size(3) + 1) x_pad = F.pad(x, [1, 1, 1, 1, 0, 0, 0, 0]) x = x_pad.permute(0, 2, 3, 1).contiguous()[grid_batch, grid_x, grid_y].permute(0, 3, 1, 2) return x def rand_offset(x, ratio=1, ratio_h=1, ratio_v=1): w, h = x.size(2), x.size(3) imgs = [] for img in x.unbind(dim = 0): max_h = int(w * ratio * ratio_h) max_v = int(h * ratio * ratio_v) value_h = random.randint(0, max_h) * 2 - max_h value_v = random.randint(0, max_v) * 2 - max_v if abs(value_h) > 0: img = torch.roll(img, value_h, 2) if abs(value_v) > 0: img = torch.roll(img, value_v, 1) imgs.append(img) return torch.stack(imgs) def rand_offset_h(x, ratio=1): return rand_offset(x, ratio=1, ratio_h=ratio, ratio_v=0) def rand_offset_v(x, ratio=1): return rand_offset(x, ratio=1, ratio_h=0, ratio_v=ratio) def rand_cutout(x, ratio=0.5): cutout_size = int(x.size(2) * ratio + 0.5), int(x.size(3) * ratio + 0.5) offset_x = torch.randint(0, x.size(2) + (1 - cutout_size[0] % 2), size=[x.size(0), 1, 1], device=x.device) offset_y = torch.randint(0, x.size(3) + (1 - cutout_size[1] % 2), size=[x.size(0), 1, 1], device=x.device) grid_batch, grid_x, grid_y = torch.meshgrid( torch.arange(x.size(0), dtype=torch.long, device=x.device), torch.arange(cutout_size[0], dtype=torch.long, device=x.device), torch.arange(cutout_size[1], dtype=torch.long, device=x.device), indexing = 'ij') grid_x = torch.clamp(grid_x + offset_x - cutout_size[0] // 2, min=0, max=x.size(2) - 1) grid_y = torch.clamp(grid_y + offset_y - cutout_size[1] // 2, min=0, max=x.size(3) - 1) mask = torch.ones(x.size(0), x.size(2), x.size(3), dtype=x.dtype, device=x.device) mask[grid_batch, grid_x, grid_y] = 0 x = x * mask.unsqueeze(1) return x AUGMENT_FNS = { 'color': [rand_brightness, rand_saturation, rand_contrast], 'offset': [rand_offset], 'offset_h': [rand_offset_h], 'offset_v': [rand_offset_v], 'translation': [rand_translation], 'cutout': [rand_cutout], }