#!/usr/bin/env python # coding=utf-8 # Copyright (c) 2022 PyTorch contributors and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions. """ Training a Deep Convolutional Generative Adversarial Network (DCGAN) leveraging the 🤗 ecosystem. Paper: https://arxiv.org/abs/1511.06434. Based on PyTorch's official tutorial: https://pytorch.org/tutorials/beginner/dcgan_faces_tutorial.html. """ import argparse import logging import os import sys from pathlib import Path import torch import torch.nn as nn from torch.utils.data import DataLoader from torchvision.transforms import (CenterCrop, Compose, Normalize, Resize, ToTensor, ToPILImage) from torchvision.utils import save_image from PIL import Image, ImageFile ImageFile.LOAD_TRUNCATED_IMAGES = True from accelerate import Accelerator from modeling_dcgan import Discriminator, Generator from datasets import load_dataset from huggan.pytorch.metrics.inception import InceptionV3 from huggan.pytorch.metrics.fid_score import calculate_fretchet import wandb logger = logging.getLogger(__name__) def parse_args(args=None): parser = argparse.ArgumentParser() parser.add_argument("--dataset", type=str, default="mnist", help="Dataset to load from the HuggingFace hub.") parser.add_argument("--num_workers", type=int, default=0, help="Number of workers when loading data") parser.add_argument("--batch_size", type=int, default=128, help="Batch size to use during training") parser.add_argument( "--image_size", type=int, default=64, help="Spatial size to use when resizing images for training.", ) parser.add_argument( "--num_channels", type=int, default=3, help="Number of channels in the training images. For color images this is 3.", ) parser.add_argument("--latent_dim", type=int, default=100, help="Dimensionality of the latent space.") parser.add_argument( "--generator_hidden_size", type=int, default=64, help="Hidden size of the generator's feature maps.", ) parser.add_argument( "--discriminator_hidden_size", type=int, default=64, help="Hidden size of the discriminator's feature maps.", ) parser.add_argument("--num_epochs", type=int, default=5, help="number of epochs of training") parser.add_argument("--lr", type=float, default=0.0002, help="adam: learning rate") parser.add_argument( "--beta1", type=float, default=0.5, help="adam: decay of first order momentum of gradient", ) parser.add_argument("--fp16", action="store_true", help="If passed, will use FP16 training.") parser.add_argument( "--mixed_precision", type=str, default="no", choices=["no", "fp16", "bf16"], help="Whether to use mixed precision. Choose" "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." "and an Nvidia Ampere GPU.", ) parser.add_argument("--cpu", action="store_true", help="If passed, will train on the CPU.") parser.add_argument("--output_dir", type=Path, default=Path("./output"), help="Name of the directory to dump generated images during training.") parser.add_argument("--wandb", action="store_true", help="If passed, will log to Weights and Biases.") parser.add_argument( "--logging_steps", type=int, default=50, help="Number of steps between each logging", ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether to push the model to the HuggingFace hub after training.", ) parser.add_argument( "--model_name", default=None, type=str, help="Name of the model on the hub.", ) parser.add_argument( "--organization_name", default="huggan", type=str, help="Organization name to push to, in case args.push_to_hub is specified.", ) args = parser.parse_args() if args.push_to_hub: assert args.output_dir is not None, "Need an `output_dir` to create a repo when `--push_to_hub` is passed." assert args.model_name is not None, "Need a `model_name` to create a repo when `--push_to_hub` is passed." if args.output_dir is not None: os.makedirs(args.output_dir, exist_ok=True) return args # Custom weights initialization called on Generator and Discriminator def weights_init(m): classname = m.__class__.__name__ if classname.find("Conv") != -1: nn.init.normal_(m.weight.data, 0.0, 0.02) elif classname.find("BatchNorm") != -1: nn.init.normal_(m.weight.data, 1.0, 0.02) nn.init.constant_(m.bias.data, 0) def training_function(config, args): # Initialize the accelerator. We will let the accelerator handle device placement for us in this example. accelerator = Accelerator(fp16=args.fp16, cpu=args.cpu, mixed_precision=args.mixed_precision) # Setup logging, we only want one process per machine to log things on the screen. # accelerator.is_local_main_process is only True for one process per machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR) if accelerator.is_local_main_process: # set up Weights and Biases if requested if args.wandb: import wandb wandb.init(project=str(args.output_dir).split("/")[-1]) # Loss function criterion = nn.BCELoss() # Initialize generator and discriminator generator = Generator( num_channels=args.num_channels, latent_dim=args.latent_dim, hidden_size=args.generator_hidden_size, ) discriminator = Discriminator(num_channels=args.num_channels, hidden_size=args.discriminator_hidden_size) # Initialize weights generator.apply(weights_init) discriminator.apply(weights_init) # Initialize Inceptionv3 (for FID metric) model = InceptionV3() # Initialize Inceptionv3 (for FID metric) model = InceptionV3() # Create batch of latent vectors that we will use to visualize # the progression of the generator fixed_noise = torch.randn(64, args.latent_dim, 1, 1, device=accelerator.device) # Establish convention for real and fake labels during training real_label = 1.0 fake_label = 0.0 # Setup Adam optimizers for both G and D discriminator_optimizer = torch.optim.Adam(discriminator.parameters(), lr=args.lr, betas=(args.beta1, 0.999)) generator_optimizer = torch.optim.Adam(generator.parameters(), lr=args.lr, betas=(args.beta1, 0.999)) # Configure data loader dataset = load_dataset(args.dataset) transform = Compose( [ Resize(args.image_size), CenterCrop(args.image_size), ToTensor(), Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)), ] ) def transforms(examples): examples["pixel_values"] = [transform(image.convert("RGB")) for image in examples["image"]] del examples["image"] return examples transformed_dataset = dataset.with_transform(transforms) dataloader = DataLoader( transformed_dataset["train"], batch_size=args.batch_size, shuffle=True, num_workers=args.num_workers ) generator, discriminator, generator_optimizer, discriminator_optimizer, dataloader = accelerator.prepare(generator, discriminator, generator_optimizer, discriminator_optimizer, dataloader) # ---------- # Training # ---------- # Training Loop # Lists to keep track of progress img_list = [] logger.info("***** Running training *****") logger.info(f" Num Epochs = {args.num_epochs}") # For each epoch for epoch in range(args.num_epochs): # For each batch in the dataloader for step, batch in enumerate(dataloader, 0): ############################ # (1) Update D network: maximize log(D(x)) + log(1 - D(G(z))) ########################### ## Train with all-real batch discriminator.zero_grad() # Format batch real_cpu = batch["pixel_values"] batch_size = real_cpu.size(0) label = torch.full((batch_size,), real_label, dtype=torch.float, device=accelerator.device) # Forward pass real batch through D output = discriminator(real_cpu).view(-1) # Calculate loss on all-real batch errD_real = criterion(output, label) # Calculate gradients for D in backward pass accelerator.backward(errD_real) D_x = output.mean().item() ## Train with all-fake batch # Generate batch of latent vectors noise = torch.randn(batch_size, args.latent_dim, 1, 1, device=accelerator.device) # Generate fake image batch with G fake = generator(noise) label.fill_(fake_label) # Classify all fake batch with D output = discriminator(fake.detach()).view(-1) # Calculate D's loss on the all-fake batch errD_fake = criterion(output, label) # Calculate the gradients for this batch, accumulated (summed) with previous gradients accelerator.backward(errD_fake) D_G_z1 = output.mean().item() # Compute error of D as sum over the fake and the real batches errD = errD_real + errD_fake # Update D discriminator_optimizer.step() ############################ # (2) Update G network: maximize log(D(G(z))) ########################### generator.zero_grad() label.fill_(real_label) # fake labels are real for generator cost # Since we just updated D, perform another forward pass of all-fake batch through D output = discriminator(fake).view(-1) # Calculate G's loss based on this output errG = criterion(output, label) # Calculate gradients for G accelerator.backward(errG) D_G_z2 = output.mean().item() # Update G generator_optimizer.step() # Log all results if (step + 1) % args.logging_steps == 0: errD.detach() errG.detach() if accelerator.state.num_processes > 1: errD = accelerator.gather(errD).sum() / accelerator.state.num_processes errG = accelerator.gather(errG).sum() / accelerator.state.num_processes train_logs = { "epoch": epoch, "discriminator_loss": errD, "generator_loss": errG, "D_x": D_x, "D_G_z1": D_G_z1, "D_G_z2": D_G_z2, } log_str = "" for k, v in train_logs.items(): log_str += "| {}: {:.3e}".format(k, v) if accelerator.is_local_main_process: logger.info(log_str) if args.wandb: wandb.log(train_logs) # Check how the generator is doing by saving G's output on fixed_noise if (step % 500 == 0) or ((epoch == args.num_epochs - 1) and (step == len(dataloader) - 1)): with torch.no_grad(): fake_images = generator(fixed_noise).detach().cpu() file_name = args.output_dir/f"iter_{step}.png" save_image(fake_images.data[:25], file_name, nrow=5, normalize=True) if accelerator.is_local_main_process and args.wandb: wandb.log({'generated_examples': wandb.Image(str(file_name)) }) # Calculate FID metric fid = calculate_fretchet(real_cpu, fake, model.to(accelerator.device)) logger.info(f"FID: {fid}") if accelerator.is_local_main_process and args.wandb: wandb.log({"FID": fid}) # Optionally push to hub if accelerator.is_main_process and args.push_to_hub: generator.module.push_to_hub( repo_path_or_name=args.output_dir / args.model_name, organization=args.organization_name, ) def main(): args = parse_args() print(args) training_function({}, args) if __name__ == "__main__": main()