# sources: # https://www.kaggle.com/code/ibtesama/gan-in-pytorch-with-fid/notebook # https://github.com/mseitzer/pytorch-fid/blob/master/src/pytorch_fid/fid_score.py import numpy as np from scipy import linalg from torch.nn.functional import adaptive_avg_pool2d def calculate_activation_statistics(images, model, batch_size=128, dims=2048): model.eval() act = np.empty((len(images), dims)) batch = images pred = model(batch)[0] # If model output is not scalar, apply global spatial average pooling. # This happens if you choose a dimensionality not equal 2048. if pred.size(2) != 1 or pred.size(3) != 1: pred = adaptive_avg_pool2d(pred, output_size=(1, 1)) act = pred.cpu().data.numpy().reshape(pred.size(0), -1) mu = np.mean(act, axis=0) sigma = np.cov(act, rowvar=False) return mu, sigma def calculate_frechet_distance(mu1, sigma1, mu2, sigma2, eps=1e-6): """Numpy implementation of the Frechet Distance. The Frechet distance between two multivariate Gaussians X_1 ~ N(mu_1, C_1) and X_2 ~ N(mu_2, C_2) is d^2 = ||mu_1 - mu_2||^2 + Tr(C_1 + C_2 - 2*sqrt(C_1*C_2)). """ mu1 = np.atleast_1d(mu1) mu2 = np.atleast_1d(mu2) sigma1 = np.atleast_2d(sigma1) sigma2 = np.atleast_2d(sigma2) assert mu1.shape == mu2.shape, \ 'Training and test mean vectors have different lengths' assert sigma1.shape == sigma2.shape, \ 'Training and test covariances have different dimensions' diff = mu1 - mu2 covmean, _ = linalg.sqrtm(sigma1.dot(sigma2), disp=False) if not np.isfinite(covmean).all(): msg = ('fid calculation produces singular product; ' 'adding %s to diagonal of cov estimates') % eps print(msg) offset = np.eye(sigma1.shape[0]) * eps covmean = linalg.sqrtm((sigma1 + offset).dot(sigma2 + offset)) if np.iscomplexobj(covmean): if not np.allclose(np.diagonal(covmean).imag, 0, atol=1e-3): m = np.max(np.abs(covmean.imag)) raise ValueError('Imaginary component {}'.format(m)) covmean = covmean.real tr_covmean = np.trace(covmean) return (diff.dot(diff) + np.trace(sigma1) + np.trace(sigma2) - 2 * tr_covmean) def calculate_fretchet(images_real, images_fake, model): """Calculate the fretched distance.""" # calculate statistics (mean + std) mu_1, std_1 = calculate_activation_statistics(images_real, model) mu_2, std_2 = calculate_activation_statistics(images_fake, model) # compute distance fid_value = calculate_frechet_distance(mu_1, std_1, mu_2, std_2) return fid_value