import functools import seqio import tensorflow as tf import t5.data from datasets import load_dataset, load_from_disk from t5.data import postprocessors from t5.data import preprocessors from t5.evaluation import metrics from seqio import FunctionDataSource, utils from ul2_objective import ul2_objective # values from UL2 paper https://arxiv.org/pdf/2205.05131.pdf chapter 3.1.2 table 1 R_DENOISER_SPAN_LENGTHS = [3.0, 8.0] X_DENOISER_SPAN_LENGTHS = [3.0, 8.0, 64.0, 64.0] R_DENOISER_CORRUPT_RATES = [0.15, 0.15] X_DENOISER_CORRUPT_RATES = [0.5, 0.5, 0.15, 0.5] R_DENOISER_TOKEN_PREFIX = '[NLU]' X_DENOISER_TOKEN_PREFIX = '[NLG]' S_DENOISER_TOKEN_PREFIX = '[S2S]' TaskRegistry = seqio.TaskRegistry vocabulary = seqio.SentencePieceVocabulary('spiece.model', extra_ids=0) DEFAULT_OUTPUT_FEATURES = { "inputs": seqio.Feature( vocabulary=vocabulary, add_eos=True, required=False), "targets": seqio.Feature( vocabulary=vocabulary, add_eos=True) } def gen_dataset(split, shuffle=False, seed=None, column="text", dataset=None): if shuffle: if seed: dataset = dataset.shuffle(seed=seed) else: dataset = dataset.shuffle() while True: for item in dataset[str(split)]: if item[column] is not None: yield item[column] def dataset_fn(split, shuffle_files, seed=None, dataset=None): return tf.data.Dataset.from_generator( functools.partial(gen_dataset, split, shuffle_files, seed, dataset=dataset), output_signature=tf.TensorSpec( shape=(), dtype=tf.string, name=dataset_name) ) @utils.map_over_dataset def target_to_key(x, key_map, target_key): """Assign the value from the dataset to target_key in key_map""" return {**key_map, target_key: x} dataset_name = "/researchdisk/lm_training_dataset_full" dataset_params = {"from_disk_path": dataset_name} if "from_disk_path" in dataset_params: dataset = load_from_disk(dataset_params.get("from_disk_path")) else: dataset = load_dataset(**dataset_params) dataset_shapes = {"train": dataset["train"].num_rows, "validation": dataset["validation"].num_rows} TaskRegistry.add( "pretrain_finnish_ul2", source=seqio.FunctionDataSource( dataset_fn=functools.partial(dataset_fn, dataset=dataset), splits=("train", "validation"), caching_permitted=False, num_input_examples=dataset_shapes, ), preprocessors=[ functools.partial( target_to_key, key_map={ "inputs": None, "targets": None, }, target_key="targets"), seqio.preprocessors.tokenize, functools.partial( ul2_objective, shard_ds=False, use_prefix_lm_task=True, # use S-denoising rates=[0.4 / len(R_DENOISER_SPAN_LENGTHS)]*len(R_DENOISER_SPAN_LENGTHS) + [ 0.4 / len(X_DENOISER_SPAN_LENGTHS)]*len(X_DENOISER_SPAN_LENGTHS) + [0.2], # equal total 40% rate for both R- and X-denoisers + 20% for S-denoising (suggested at the paper chapter 4.5) mean_noise_span_lengths=R_DENOISER_SPAN_LENGTHS + X_DENOISER_SPAN_LENGTHS, noise_densities=R_DENOISER_CORRUPT_RATES + X_DENOISER_CORRUPT_RATES, optional_task_prefixes=[R_DENOISER_TOKEN_PREFIX]*len(R_DENOISER_SPAN_LENGTHS) + [ X_DENOISER_TOKEN_PREFIX]*len(X_DENOISER_SPAN_LENGTHS) + [S_DENOISER_TOKEN_PREFIX], reserved_for_packing=1, # make room for task prefix token ), seqio.preprocessors.append_eos_after_trim, ], output_features={"targets": DEFAULT_OUTPUT_FEATURES["targets"]}, metric_fns=[metrics.accuracy] )