File size: 9,052 Bytes
e5b9953
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
import functools
import tensorflow as tf
import seqio
import t5.data
from typing import Optional, Sequence

# found this function and modified from https://github.com/GoogleCloudPlatform/t5x-on-vertex-ai/blob/main/tasks/custom_tasks.py#L78
# UL2 paper appendix code missed this function
def prepend_prompt(dataset: tf.data.Dataset,
                   output_features: seqio.preprocessors.OutputFeaturesType,
                   sequence_length: Optional[
                       seqio.preprocessors.SequenceLengthType] = None,
                   prompt_mode: str = "",
                   key: str = "inputs",
                   mode: str = "") -> tf.data.Dataset:
    """Prepends a prompt at the beginning of an input sequence."""
    del sequence_length
    if prompt_mode and mode:
        # output_features may not have inputs key
        out_keys = list(output_features.keys())
        prompt_tokens = output_features[out_keys[0]
                                        ].vocabulary.encode_tf(prompt_mode)

        def add_to_inputs(x):
            x[key] = tf.concat([prompt_tokens, x[key]], axis=0)
            return x

        dataset = dataset.map(add_to_inputs)
    return dataset

# modified from t5.data.preprocessors because output_features may not have inputs key
def split_tokens_to_inputs_length(dataset, sequence_length,
                                  output_features, **kwargs):
    max_tokens = sequence_length['inputs']
    # output_features may not have inputs key
    out_keys = list(output_features.keys())
    if output_features[out_keys[0]].add_eos:
        # Leave room to insert an EOS token.
        max_tokens -= 1

    return t5.data.preprocessors.split_tokens(dataset, max_tokens_per_segment=max_tokens, **kwargs)

# modified from t5.data.preprocessors because output_features may not have inputs key
def prefix_lm(dataset, sequence_length, output_features):
    """Prefix language modeling objective used in Raffel et al. 2019."""
    ds = dataset
    ds = t5.data.preprocessors.select_random_chunk(ds, output_features=output_features,
                                                   feature_key='targets', max_length=65536)
    ds = split_tokens_to_inputs_length(ds, output_features=output_features,
                                       sequence_length=sequence_length)
    ds = t5.data.preprocessors.denoise(
        ds,
        output_features,
        inputs_fn=t5.data.preprocessors.drop_nonnoise_tokens,
        targets_fn=t5.data.preprocessors.drop_noise_tokens,
        noise_density=0.5,
        noise_mask_fn=t5.data.preprocessors.random_prefix_noise_mask,
    )
    return ds

# copied from UL2 paper https://arxiv.org/pdf/2205.05131.pdf appendix chapter 9.2
# note: modified to use the prefix_lm() from above instead of the default t5.data.preprocessors.prefix_lm() because output_features may not have inputs key
def ul2_objective(dataset: tf.data.Dataset,
                  sequence_length: seqio.preprocessors.SequenceLengthType,
                  output_features: seqio.preprocessors.OutputFeaturesType,
                  use_prefix_lm_task: bool = False,
                  rates: Optional[Sequence[float]] = None,
                  mean_noise_span_lengths: Sequence[float] = (3.0,),
                  noise_densities: Sequence[float] = (0.15,),
                  shard_ds: bool = True,
                  optional_task_prefixes: Optional[Sequence[str]] = None,
                  input_feature_key: str = "inputs",
                  merge_examples_to_reduce_padding: bool = True,
                  reserved_for_packing: bool = None,
                  seed: int = 7) -> tf.data.Dataset:
    """UL2-like pre-training objectives.
    This preprocessor amounts to calling the 'span_corruption' function several
    times with different values of 'noise_density' and 'mean_noise_span_length'.
    We either shard or copy the dataset, then apply each function to each shard.
    Add S-denoising (prefixLM) using use_prefix_lm_task.
    Args:
        dataset: A tf.data.Dataset with dictionaries containing the key 'input_feature_key'.
        sequence_length: dict mapping of feature key to int length for that feature.
        output_features: mapping of keys to features.
        use_prefix_lm_task: <bool> If True, include PrefixLM in the task mix.
        rates: <Optional<List<float>> List of rates per task. If None, tasks are sampled uniformly.
        mean_noise_span_lengths: List of mean number of tokens per masked span per example.
        noise_densities: List of what fraction of the tokens to mask.
        shard_ds: <bool> If True, shard dataset per objective.
        optional_task_prefixes: <Optional<list<str>> Strings to prepend for each corruption scheme. NOTE: If including prefixLM task, it must be the last prefix.
        input_feature_key: which feature to use from the dataset as the input text tokens.
        merge_examples_to_reduce_padding: if True, combines multiple input examples to reduce padding.
        reserved_for_packing: if specified, reduces the desired inputs length by the specified amount to enable multiple examples to be packed together downstream.
        seed: tf.int64 for controlling the random choice of spans.
    Returns:
        a dataset
    """

    if optional_task_prefixes:  # Ensure each task has a prefix.
        num_tasks = len(noise_densities) + int(use_prefix_lm_task)
        valid_number_of_prefixes = num_tasks == len(optional_task_prefixes)
        if not valid_number_of_prefixes:
            raise ValueError(
                "Number of task prefixes must match number of tasks.")
    inputs_length = sequence_length[input_feature_key]
    input_lengths, targets_lengths = [], []
    sequence_lengths = {x: y for x, y in sequence_length.items()}
    if reserved_for_packing:
        inputs_length -= reserved_for_packing
        for x, y in sequence_length.items():
            sequence_lengths[x] = y - reserved_for_packing
    hyperparams = list(zip(mean_noise_span_lengths, noise_densities))
    for mean_noise_span_length, noise_density in hyperparams:
        input_length, targets_length = t5.data.preprocessors.random_spans_helper(
            extra_tokens_per_span_inputs=1,
            extra_tokens_per_span_targets=1,
            inputs_length=inputs_length,
            mean_noise_span_length=mean_noise_span_length,
            noise_density=noise_density)
        input_lengths.append(input_length)
        targets_lengths.append(targets_length)

        if sequence_length["targets"] < targets_length:
            upper_bound = max(targets_lengths)
            raise ValueError(
                f'Expected max targets length for span corruption ({upper_bound}) is '
                f'greater than configured targets length '
                f"({sequence_length['targets']})")
    ds = dataset
    ds = t5.data.preprocessors.select_random_chunk(
        ds,
        output_features=output_features,
        feature_key="targets",
        max_length=65536)
    if merge_examples_to_reduce_padding:
        ds = t5.data.preprocessors.reduce_concat_tokens(
            ds, feature_key="targets", batch_size=128)
    num_shards = len(input_lengths) + int(use_prefix_lm_task)
    if shard_ds:
        ds_shards = [ds.shard(num_shards, i) for i in range(num_shards)]
    else:
        ds_shards = [ds for _ in range(num_shards)]
    processed_ds = []
    hyperparams = zip(input_lengths, hyperparams, range(num_shards))
    for input_length, (noise_span_length, noise_density), i in hyperparams:
        ds = ds_shards[i]
        ds = t5.data.preprocessors.split_tokens(
            ds,
            feature_key="targets",
            min_tokens_per_segment=None,
            max_tokens_per_segment=input_length)
        ds = t5.data.preprocessors.denoise(
            ds,
            output_features,
            inputs_fn=t5.data.preprocessors.noise_span_to_unique_sentinel,
            targets_fn=t5.data.preprocessors.nonnoise_span_to_unique_sentinel,
            noise_density=noise_density,
            noise_mask_fn=functools.partial(
                t5.data.preprocessors.random_spans_noise_mask,
                mean_noise_span_length=noise_span_length),
            input_feature_key=input_feature_key)
        if optional_task_prefixes:
            ds = prepend_prompt(
                ds,
                output_features,
                prompt_mode=optional_task_prefixes[i],
                mode=optional_task_prefixes[i],
                key=input_feature_key)
        processed_ds.append(ds)
    if use_prefix_lm_task:
        ds = ds_shards[-1]
        ds = prefix_lm(
            ds, sequence_lengths, output_features)
        if optional_task_prefixes:
            ds = prepend_prompt(
                ds,
                output_features,
                prompt_mode=optional_task_prefixes[-1],
                mode=optional_task_prefixes[-1],
                key=input_feature_key)
        processed_ds.append(ds)
    ds = tf.data.experimental.sample_from_datasets(processed_ds, rates, seed)
    return ds