--- license: apache-2.0 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: swin-tiny-patch4-window7-224-finetuned-eurosat-people results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: images split: train args: images metrics: - name: Accuracy type: accuracy value: 0.952 --- # swin-tiny-patch4-window7-224-finetuned-eurosat-people This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.1711 - Accuracy: 0.952 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 4 | 0.3073 | 0.912 | | No log | 2.0 | 8 | 0.2076 | 0.92 | | 0.4055 | 3.0 | 12 | 0.1789 | 0.928 | | 0.4055 | 4.0 | 16 | 0.1911 | 0.928 | | 0.3045 | 5.0 | 20 | 0.1695 | 0.928 | | 0.3045 | 6.0 | 24 | 0.1756 | 0.944 | | 0.3045 | 7.0 | 28 | 0.1751 | 0.944 | | 0.2419 | 8.0 | 32 | 0.1727 | 0.944 | | 0.2419 | 9.0 | 36 | 0.1711 | 0.952 | | 0.2375 | 10.0 | 40 | 0.1711 | 0.952 | ### Framework versions - Transformers 4.28.1 - Pytorch 2.0.0+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3