{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "extract_features": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fbdd0c6e980>"}, "verbose": 1, "policy_kwargs": {":type:": "", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1685421356806946398, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAACGnSb1P+G69T4shP8aPfj+BfQw/xbnEPmVnNL2LKfU9rjn4vRlnSD+RT58+iIELPyH1cz6NEMW+TxAGPnqxBb7IwUI/iyMAv7OtQ76L00U/aJ+bvjkW2z8X13i9SAO+v2jahL9C1Qo/QbcMP968iL+M+Dc+Nd1gP/5mOj7E1Bc/eT6Pvf/AgT/Keo6+9YIfPwQR7r5hCYO/WVABPWHpDD/8tYU9Tc/Qv+ZKCr5FtLa/JLf/PjL3f7+81y6/chXSPkdKPb5RE2o/d04Dv31MRMD1pXY/RQbsv0G3DD/evIi/NJ0xvg+bcb3zjiE/v0SzPwDx8j+ik72/p6BoP1f6J7+h+Oo9PIFsvxj8vT0OgQ1AcPCKP4iDIr/WuAQ/n/X9vlPTUj/mpli/8dE8P7o5ij+U4yK/L2mcv6Ub6b4EEBbAaNqEv0LVCj9Btww/3ryIvxNUU76Yy7s++RIGPxj8lz/94iK/5Sz+P6CBOz9aCBu/6zFNPTYvmD85Y5E/8hwmPh/EkL3K2Yu/ZCxEPi71CT5tDXc9R79LvyFsTj+sIT49g2Mgv13CKT/g/lq/0W6xPGjahL9C1Qo/QbcMP968iL+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAADXKck2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAZrCKOwAAAAAjt/+/AAAAACm3kT0AAAAAtQ/zPwAAAAAXz6A9AAAAABxt8z8AAAAAlJfxvQAAAACCqNq/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA5uCMtQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgAmo0L0AAAAA3kflvwAAAADNq+G9AAAAAEfE9z8AAAAAAxscvQAAAAA0Dfg/AAAAAAnyzjsAAAAACxHqvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHRDATYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAID2XIu9AAAAAPyC6r8AAAAAQRs0PQAAAAA64fE/AAAAAHW7gr0AAAAABrUAQAAAAAC3xBa9AAAAAKky/L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD36xQzAACAPwAAAAAAAAAAAAAAAAAAAAAAAACAbyHPOwAAAABYzfW/AAAAAIf9ibwAAAAAZ6wAQAAAAADmcfk9AAAAAFNY+z8AAAAALOK4PQAAAAD98Om/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJyyLe/Ho5iMAWyUTegDjAF0lEdAqan6O/+Kj3V9lChoBkdAm4JiPuG9H2gHTegDaAhHQKmtbwR5C4V1fZQoaAZHQJx7szUI9kloB03oA2gIR0CprsvmHP/rdX2UKGgGR0CcGxP3BYV7aAdN6ANoCEdAqbG2YplSTHV9lChoBkdAkYQ8IJJGv2gHTegDaAhHQKm2SZLIxQB1fZQoaAZHQJ07qig00nBoB03oA2gIR0Cpu2laKUFCdX2UKGgGR0Cb+HHxz7uVaAdN6ANoCEdAqb17zmOlwnV9lChoBkdAnYuU8ifQKWgHTegDaAhHQKnA0nqFAVx1fZQoaAZHQJyEsFiay8loB03oA2gIR0CpxScZDRdAdX2UKGgGR0Cco/oqCpWFaAdN6ANoCEdAqcinSH/LknV9lChoBkdAmrDyc5Ke1GgHTegDaAhHQKnJ+VM23rl1fZQoaAZHQJpwUXzlLe1oB03oA2gIR0CpzN04rBj4dX2UKGgGR0CbkGSWJJoTaAdN6ANoCEdAqdExVp9JBnV9lChoBkdAmUUZaaCtimgHTegDaAhHQKnVYSBbwBp1fZQoaAZHQJrjE6CDmKZoB03oA2gIR0Cp13pV0cOtdX2UKGgGR0CbYghrnDBNaAdN6ANoCEdAqdvrBO58SnV9lChoBkdAm6+muxKQJWgHTegDaAhHQKngQ8A7xNJ1fZQoaAZHQJzlH4ubqhVoB03oA2gIR0Cp47X7tRekdX2UKGgGR0Cb+klme18caAdN6ANoCEdAqeUOIMz/InV9lChoBkdAnSZSV8kUsWgHTegDaAhHQKnn5gF5fMR1fZQoaAZHQJxkMWM0gr9oB03oA2gIR0Cp7EVsUIszdX2UKGgGR0CXSrsRg7YDaAdN6ANoCEdAqe+q9ugpSnV9lChoBkdAmDUwzch1T2gHTegDaAhHQKnxknQY1pF1fZQoaAZHQJt8x6t1ZDBoB03oA2gIR0Cp9hd+5OJtdX2UKGgGR0CcymRR/EwWaAdN6ANoCEdAqfuAiaAnUnV9lChoBkdAmQ7PWYnfEWgHTegDaAhHQKn+8LjxTbZ1fZQoaAZHQJ0jMntv4udoB03oA2gIR0CqAEfhuO0cdX2UKGgGR0CZQIwiaAnVaAdN6ANoCEdAqgNCWqtHQXV9lChoBkdAmzToA80UGmgHTegDaAhHQKoHn1WbPQh1fZQoaAZHQJkjs+eOGTNoB03oA2gIR0CqCxBC2MKkdX2UKGgGR0CaQia2nbZfaAdN6ANoCEdAqgx1WsA/93V9lChoBkdAmrjpz90ihWgHTegDaAhHQKoQkhbnoxJ1fZQoaAZHQJvTGBJ7LMdoB03oA2gIR0CqFuVrIo3KdX2UKGgGR0CZBkLkjopyaAdN6ANoCEdAqhpP2/SH/XV9lChoBkdAm8/X7Hhjv2gHTegDaAhHQKobqL5RCQd1fZQoaAZHQJ0ZGVbA1vVoB03oA2gIR0CqHokmICU5dX2UKGgGR0CdLqrKNhmYaAdN6ANoCEdAqiLenbZezHV9lChoBkdAnJTmPo3aSWgHTegDaAhHQKonBJEpiJB1fZQoaAZHQJvb1TWGyopoB03oA2gIR0CqKREFGG21dX2UKGgGR0CcSjhouf29aAdN6ANoCEdAqi3tedCmdnV9lChoBkdAna+nY6GQCGgHTegDaAhHQKo1KF/QSjB1fZQoaAZHQJtJrM9r435oB03oA2gIR0CqOPUoKD02dX2UKGgGR0CcSjztTkyUaAdN6ANoCEdAqjpTASFoMHV9lChoBkdAmkSkOuq3mWgHTegDaAhHQKo9SM+eOGV1fZQoaAZHQJzNdM+NcW1oB03oA2gIR0CqQaYx1xKhdX2UKGgGR0CdD9XV9Wp7aAdN6ANoCEdAqkUZa7mMfnV9lChoBkdAj96GIj4YamgHTegDaAhHQKpGet3fQ8h1fZQoaAZHQJtGRuCPIXFoB03oA2gIR0CqSW5Xlr/LdX2UKGgGR0CZ5E4z7/GVaAdN6ANoCEdAqk+bnA6+4HV9lChoBkdAm169Htnf22gHTegDaAhHQKpUQ+jdpIt1fZQoaAZHQJyrGwbEP2BoB03oA2gIR0CqVaafzz3AdX2UKGgGR0CYu3c3l0YCaAdN6ANoCEdAqliZHAh0Q3V9lChoBkdAnFpw8GLUC2gHTegDaAhHQKpdBhVlwtJ1fZQoaAZHQJjc4qe9SMtoB03oA2gIR0CqYJebExZddX2UKGgGR0CbvaCJXQt0aAdN6ANoCEdAqmH4LmZE2HV9lChoBkdAnSvuzt1IRWgHTegDaAhHQKpk691U2k11fZQoaAZHQJwPBlbu+h5oB03oA2gIR0CqalngYP5IdX2UKGgGR0CcF8q3EyckaAdN6ANoCEdAqm/j5qM3qHV9lChoBkdAm7MW1UlzEWgHTegDaAhHQKpxf+F10T11fZQoaAZHQJvMglE7W/doB03oA2gIR0CqdIEPlMh6dX2UKGgGR0CU8JPppvgnaAdN6ANoCEdAqnkDA1vVE3V9lChoBkdAnu9XIIWxhWgHTegDaAhHQKp8kLw4KhN1fZQoaAZHQJumF/b0voNoB03oA2gIR0CqfexxtHhCdX2UKGgGR0Cd3y6Z6UqyaAdN6ANoCEdAqoDab+cYqHV9lChoBkdAnMm9pEhJRWgHTegDaAhHQKqFggCfYjB1fZQoaAZHQJwD17pmmLtoB03oA2gIR0CqiqhCUorndX2UKGgGR0Cak1y+pOvdaAdN6ANoCEdAqoy8NDtw73V9lChoBkdAlfT1WOp84WgHTegDaAhHQKqP3cPe54J1fZQoaAZHQJuzZDb8FZBoB03oA2gIR0CqlDg+Y+jedX2UKGgGR0CbyR4Ia99MaAdN6ANoCEdAqpeZ0CA+ZHV9lChoBkdAnZbve+Eh7mgHTegDaAhHQKqY8fFJg9h1fZQoaAZHQJtTUDZDiOxoB03oA2gIR0Cqm9mDDjzadX2UKGgGR0CdjtscQyylaAdN6ANoCEdAqqA3K+zt1XV9lChoBkdAnSdxBE8aGmgHTegDaAhHQKqkoZRbbDd1fZQoaAZHQJ4hiojv/ipoB03oA2gIR0CqprM6JZW8dX2UKGgGR0Cbls8OTaCdaAdN6ANoCEdAqqroZCOWB3V9lChoBkdAm4VeRLbpNmgHTegDaAhHQKqvRCrLhaV1fZQoaAZHQJ0ZOKziS7poB03oA2gIR0Cqsqt6ol2NdX2UKGgGR0CeSUkJKJ2uaAdN6ANoCEdAqrQNMRHww3V9lChoBkdAnBmr2xptamgHTegDaAhHQKq3ACJXQt11fZQoaAZHQJtRdmnO0LNoB03oA2gIR0Cqu1G+CbtrdX2UKGgGR0CcoVA44p+daAdN6ANoCEdAqr7mReTmn3V9lChoBkdAl+yAHmig02gHTegDaAhHQKrA3TMJQch1fZQoaAZHQJrlWhCdBjZoB03oA2gIR0CqxVmTC+DfdX2UKGgGR0Cd22+AVfu1aAdN6ANoCEdAqsprSG8Em3V9lChoBkdAnFxrPY4ACGgHTegDaAhHQKrNzdFfAsV1fZQoaAZHQJyB1oCdSVJoB03oA2gIR0CqzyT544ZNdX2UKGgGR0CceU5qdpZfaAdN6ANoCEdAqtH+6ClJpXV9lChoBkdAnGr7f51vEWgHTegDaAhHQKrWQEkjX4F1fZQoaAZHQJ1lZfPX05FoB03oA2gIR0Cq2Y4c/+sHdX2UKGgGR0CdKnkj5bhWaAdN6ANoCEdAqtrnb212JXV9lChoBkdAmtJDAaef7WgHTegDaAhHQKrfBzAeq711fZQoaAZHQJtGP2OAAhloB03oA2gIR0Cq5TpFCswMdX2UKGgGR0CeexeLvTgEaAdN6ANoCEdAquifXiBGx3V9lChoBkdAnl3/YSQHRmgHTegDaAhHQKrqA5wwTM91fZQoaAZHQJ2mE57w8W9oB03oA2gIR0Cq7Qke6qbSdX2UKGgGR0Cdhdkyk9EDaAdN6ANoCEdAqvFmKyfL93V9lChoBkdAmlCoY3vQW2gHTegDaAhHQKr03gTAWSF1fZQoaAZHQJ0Qf+717IFoB03oA2gIR0Cq9jPZqVQidX2UKGgGR0CdwX2IO6NEaAdN6ANoCEdAqvmA2S+xnnVlLg=="}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "", ":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.11", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}