import math import torch import torch.nn as nn from torch.nn import functional as f from transformers import PreTrainedModel from transformers.activations import ACT2FN from language_config import BigBrainLanguageConfig def _make_casual_mask(size: int) -> torch.Tensor: return torch.tril(torch.ones(size, size)) class RootMeanSquareNorm(nn.Module): def __init__(self, hidden_size, eps=1e-6): super().__init__() self.weight = nn.Parameter(torch.ones(hidden_size)) self.variance_eps = eps def forward(self, x: torch.Tensor): variance = x.pow(2).mean(-1, keepdim=True) x = x * torch.rsqrt(variance + self.variance_eps) return self.weight * x class MultiLayerPerceptron(nn.Module): def __init__(self, config: BigBrainLanguageConfig): super().__init__() self.config = config self.gate_proj = nn.Linear(config.hidden_size, config.intermediate_size, bias=False) self.up_proj = nn.Linear(config.hidden_size, config.intermediate_size, bias=False) self.down_proj = nn.Linear(config.intermediate_size, config.hidden_size, bias=False) self.act_fn = ACT2FN[config.hidden_act] def forward(self, x: torch.Tensor) -> torch.Tensor: return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x)) class RotaryPositionalEmbedding(nn.Module): def __init__(self, dim: int, base: int = 10000): super().__init__() self.dim = dim self.base = base self.cos = None self.sin = None def _build_cache(self, x: torch.Tensor): if self.cos is not None and x.shape[0] <= self.cos.shape[0]: return seq_len = x.shape[0] theta = 1.0 / (self.base ** (torch.arange(0, self.dim, 2).float() / self.dim)).to(x.device) seq_idx = torch.arange(seq_len, device=x.device).float().to(x.device) idx_theta = torch.einsum('a,b->ab', seq_idx, theta) idx_theta = torch.cat([idx_theta, idx_theta], dim=1) self.cos = idx_theta.cos()[:, None, None, :] self.sin = idx_theta.sin()[:, None, None, :] def _neg_half(self, x: torch.Tensor): d_2 = self.dim // 2 return torch.cat([-x[:, :, :, d_2:], x[:, :, :, :d_2]], dim=-1) def forward(self, x: torch.Tensor): self._build_cache(x) x_rope, x_pass = x[..., :self.dim], x[..., self.dim:] neg_half_x = self._neg_half(x_rope) x_rope = (x_rope * self.cos[:x.shape[0]]) + (neg_half_x * self.sin[:x.shape[0]]) return torch.cat((x_rope, x_pass), dim=-1) class RotaryMultiHeadAttention(nn.Module): def __init__(self, config: BigBrainLanguageConfig): super().__init__() self.config = config self.hidden_size = config.hidden_size self.num_heads = config.num_attention_heads self.head_dim = config.hidden_size // config.num_attention_heads if (self.head_dim * config.num_attention_heads) != config.hidden_size: raise ValueError('num_embedd must be evenly divisible by num_heads') self.q_proj = nn.Linear(config.hidden_size, config.hidden_size, bias=False) self.k_proj = nn.Linear(config.hidden_size, config.hidden_size, bias=False) self.v_proj = nn.Linear(config.hidden_size, config.hidden_size, bias=False) self.o_proj = nn.Linear(config.hidden_size, config.hidden_size, bias=False) self.rope_e = RotaryPositionalEmbedding(self.head_dim, config.rope_theta) def _shape(self, tensor: torch.Tensor, batch_size: int, seq_len: int): return tensor.view(batch_size, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() def _reshape(self, tensor: torch.Tensor, batch_size: int, seq_len: int): return tensor.transpose(1, 2).contiguous().reshape(batch_size, seq_len, self.hidden_size) def forward(self, states: torch.Tensor, mask: torch.Tensor = None) -> torch.Tensor: batch_size, seq_len, _ = states.size() q_states = self.rope_e(self._shape(self.q_proj(states), batch_size, seq_len)) k_states = self.rope_e(self._shape(self.k_proj(states), batch_size, seq_len)) v_states = self._shape(self.v_proj(states), batch_size, seq_len) attn_weights = torch.matmul(q_states, k_states.transpose(2, 3)) / math.sqrt(self.head_dim) attn_weights = torch.clamp(attn_weights, min=-1024.0, max=1024.0) if mask is not None: attn_weights = attn_weights.masked_fill(mask == 0, float('-inf')) attn_weights = f.softmax(attn_weights, dim=-1) attn_outputs = torch.matmul(attn_weights, v_states) return self._reshape(attn_outputs, batch_size, seq_len) class BigBrainDecoderLayer(nn.Module): def __init__(self, config: BigBrainLanguageConfig): super().__init__() self.config = config self.self_attn = RotaryMultiHeadAttention(config) self.feed_forward = MultiLayerPerceptron(config) self.input_norm = RootMeanSquareNorm(config.hidden_size, config.layer_norm_eps) self.attn_norm = RootMeanSquareNorm(config.hidden_size, config.layer_norm_eps) self.register_buffer('attn_mask', _make_casual_mask(config.max_position_embeddings)) def forward(self, x: torch.Tensor): batch_size, seq_len, _ = x.size() mask = self.attn_mask[:seq_len, :seq_len] x = x + self.self_attn(self.input_norm(x), mask) x = x + self.feed_forward(self.attn_norm(x)) return x class BigBrainLanguageModel(PreTrainedModel): config_class = BigBrainLanguageConfig base_model_prefix = 'big-brain-lm' def __init__(self, config: BigBrainLanguageConfig): super().__init__(config) self.config = config self.tok_embed = nn.Embedding(config.vocab_size, config.hidden_size, config.pad_token_id) self.layers = nn.ModuleList([BigBrainDecoderLayer(config) for _ in range(config.num_hidden_layers)]) self.norm = RootMeanSquareNorm(config.hidden_size, config.layer_norm_eps) self.linear = nn.Linear(config.hidden_size, config.vocab_size) self.post_init() def _init_weights(self, module): std = self.config.initializer_range if isinstance(module, nn.Linear): module.weight.data.normal_(mean=0.0, std=std) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=std) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() def forward(self, input_ids: torch.Tensor, target_ids: torch.Tensor = None): hidden_states = self.tok_embed(input_ids) for decoder_layer in self.layers: hidden_states = decoder_layer(hidden_states) hidden_states = self.norm(hidden_states) hidden_states = self.linear(hidden_states) if target_ids is None: return hidden_states, None b, t, c = hidden_states.size() loss = f.cross_entropy(hidden_states.view(b * t, c), target_ids.view(b * t)) return hidden_states, loss