--- license: creativeml-openrail-m language: - en tags: - di.ffusion.ai - stable-diffusion - LyCORIS - LoRA --- ![textenc2.jpg](https://s3.amazonaws.com/moonup/production/uploads/6380cf05f496d57325c12194/FdHQj5OTJFwvpGeBmUrcp.jpeg) # Model Card for di.FFUSION.ai Text Encoder - SD 2.1 LyCORIS di.FFUSION.ai-tXe-FXAA Trained on "121361" images. Enhance your model's quality and sharpness using your own pre-trained Unet. ![Screenshot_1282.jpg](https://s3.amazonaws.com/moonup/production/uploads/6380cf05f496d57325c12194/7LMvF7XgNCkTkqaGlnSt_.jpeg) The text encoder (without UNET) is wrapped in LyCORIS. Optimizer: torch.optim.adamw.AdamW(weight_decay=0.01, betas=(0.9, 0.99)) Network dimension/rank: 768.0 Alpha: 768.0 Module: lycoris.kohya {'conv_dim': '256', 'conv_alpha': '256', 'algo': 'loha'} Large size due to Lyco CONV 256 ![textenco2.jpg](https://s3.amazonaws.com/moonup/production/uploads/6380cf05f496d57325c12194/wST8mxFasiu8TJijqdHH_.jpeg) This is a heavy experimental version we used to test even with sloppy captions (quick WD tags and terrible clip), yet the results were satisfying. Note: This is not the text encoder used in the official FFUSION AI model. # SAMPLES **Available also at https://civitai.com/models/83622** ![image.png](https://s3.amazonaws.com/moonup/production/uploads/6380cf05f496d57325c12194/VpGDgNlC_AYotzUVxe9t2.png) ![xyz_grid-0069-3538254854.png](https://s3.amazonaws.com/moonup/production/uploads/6380cf05f496d57325c12194/FYxXTe-BL8bIHWuPPOtkp.png) ![xyz_grid-0090-2371661606.png](https://s3.amazonaws.com/moonup/production/uploads/6380cf05f496d57325c12194/PqE7af2LdKaT-vSq634BB.png) ![xyz_grid-0133-887882152.png](https://s3.amazonaws.com/moonup/production/uploads/6380cf05f496d57325c12194/2Oft5bU40hcScDFfHJnlZ.png) For a1111 Install https://github.com/KohakuBlueleaf/a1111-sd-webui-lycoris Download di.FFUSION.ai-tXe-FXAA to /models/Lycoris Option1: Insert to prompt No need to split Unet and Text Enc as its only TX encoder there. You can go up to 2x weights Option2: If you need it always ON (ex run a batch from txt file) then you can go to settings / Quicksettings list ![image.png](https://s3.amazonaws.com/moonup/production/uploads/6380cf05f496d57325c12194/3I8yV3dvL0W2cqT1WxI6F.png) add sd_lyco restart and you should have a drop-down now 🤟 🥃 ![image.png](https://s3.amazonaws.com/moonup/production/uploads/6380cf05f496d57325c12194/6COn2V-f3npFPuXCpn2uA.png) # Table of Contents - [Model Card for di.FFUSION.ai Text Encoder - SD 2.1 LyCORIS](#model-card-for--model_id-) - [Table of Contents](#table-of-contents) - [Table of Contents](#table-of-contents-1) - [Model Details](#model-details) - [Model Description](#model-description) - [Uses](#uses) - [Direct Use](#direct-use) - [Downstream Use [Optional]](#downstream-use-optional) - [Out-of-Scope Use](#out-of-scope-use) - [Bias, Risks, and Limitations](#bias-risks-and-limitations) - [Recommendations](#recommendations) - [Training Details](#training-details) - [Training Data](#training-data) - [Training Procedure](#training-procedure) - [Preprocessing](#preprocessing) - [Speeds, Sizes, Times](#speeds-sizes-times) - [Evaluation](#evaluation) - [Testing Data, Factors & Metrics](#testing-data-factors--metrics) - [Testing Data](#testing-data) - [Factors](#factors) - [Metrics](#metrics) - [Results](#results) - [Model Examination](#model-examination) - [Environmental Impact](#environmental-impact) - [Technical Specifications [optional]](#technical-specifications-optional) - [Model Architecture and Objective](#model-architecture-and-objective) - [Compute Infrastructure](#compute-infrastructure) - [Hardware](#hardware) - [Software](#software) - [Citation](#citation) - [Glossary [optional]](#glossary-optional) - [More Information [optional]](#more-information-optional) - [Model Card Authors [optional]](#model-card-authors-optional) - [Model Card Contact](#model-card-contact) - [How to Get Started with the Model](#how-to-get-started-with-the-model) # Model Details ## Model Description di.FFUSION.ai-tXe-FXAA Trained on "121361" images. Enhance your model's quality and sharpness using your own pre-trained Unet. The text encoder (without UNET) is wrapped in LyCORIS. Optimizer: torch.optim.adamw.AdamW(weight_decay=0.01, betas=(0.9, 0.99)) Network dimension/rank: 768.0 Alpha: 768.0 Module: lycoris.kohya {'conv_dim': '256', 'conv_alpha': '256', 'algo': 'loha'} Large size due to Lyco CONV 256 This is a heavy experimental version we used to test even with sloppy captions (quick WD tags and terrible clip), yet the results were satisfying. Note: This is not the text encoder used in the official FFUSION AI model. - **Developed by:** FFusion.ai - **Shared by [Optional]:** idle stoev - **Model type:** Language model - **Language(s) (NLP):** en - **License:** creativeml-openrail-m - **Parent Model:** More information needed - **Resources for more information:** More information needed # Uses ## Direct Use The text encoder (without UNET) is wrapped in LyCORIS. Optimizer: torch.optim.adamw.AdamW(weight_decay=0.01, betas=(0.9, 0.99)) Network dimension/rank: 768.0 Alpha: 768.0 Module: lycoris.kohya {'conv_dim': '256', 'conv_alpha': '256', 'algo': 'loha'} Large size due to Lyco CONV 256 # Bias, Risks, and Limitations Significant research has explored bias and fairness issues with language models (see, e.g., [Sheng et al. (2021)](https://aclanthology.org/2021.acl-long.330.pdf) and [Bender et al. (2021)](https://dl.acm.org/doi/pdf/10.1145/3442188.3445922)). Predictions generated by the model may include disturbing and harmful stereotypes across protected classes; identity characteristics; and sensitive, social, and occupational groups. ## Recommendations # Training Details ## Training Data Trained on "121361" images. ss_caption_tag_dropout_rate: "0.0", ss_multires_noise_discount: "0.3", ss_mixed_precision: "bf16", ss_text_encoder_lr: "1e-07", ss_keep_tokens: "3", ss_network_args: "{"conv_dim": "256", "conv_alpha": "256", "algo": "loha"}", ss_caption_dropout_rate: "0.02", ss_flip_aug: "False", ss_learning_rate: "2e-07", ss_sd_model_name: "stabilityai/stable-diffusion-2-1-base", ss_max_grad_norm: "1.0", ss_num_epochs: "2", ss_gradient_checkpointing: "False", ss_face_crop_aug_range: "None", ss_epoch: "2", ss_num_train_images: "121361", ss_color_aug: "False", ss_gradient_accumulation_steps: "1", ss_total_batch_size: "100", ss_prior_loss_weight: "1.0", ss_training_comment: "None", ss_network_dim: "768", ss_output_name: "FusionaMEGA1tX", ss_max_bucket_reso: "1024", ss_network_alpha: "768.0", ss_steps: "2444", ss_shuffle_caption: "True", ss_training_finished_at: "1684158038.0763328", ss_min_bucket_reso: "256", ss_noise_offset: "0.09", ss_enable_bucket: "True", ss_batch_size_per_device: "20", ss_max_train_steps: "2444", ss_network_module: "lycoris.kohya", ## Training Procedure ### Preprocessing "{"buckets": {"0": {"resolution": [192, 256], "count": 1}, "1": {"resolution": [192, 320], "count": 1}, "2": {"resolution": [256, 384], "count": 1}, "3": {"resolution": [256, 512], "count": 1}, "4": {"resolution": [384, 576], "count": 2}, "5": {"resolution": [384, 640], "count": 2}, "6": {"resolution": [384, 704], "count": 1}, "7": {"resolution": [384, 1088], "count": 15}, "8": {"resolution": [448, 448], "count": 5}, "9": {"resolution": [448, 576], "count": 1}, "10": {"resolution": [448, 640], "count": 1}, "11": {"resolution": [448, 768], "count": 1}, "12": {"resolution": [448, 832], "count": 1}, "13": {"resolution": [448, 1088], "count": 25}, "14": {"resolution": [448, 1216], "count": 1}, "15": {"resolution": [512, 640], "count": 2}, "16": {"resolution": [512, 768], "count": 10}, "17": {"resolution": [512, 832], "count": 3}, "18": {"resolution": [512, 896], "count": 1525}, "19": {"resolution": [512, 960], "count": 2}, "20": {"resolution": [512, 1024], "count": 665}, "21": {"resolution": [512, 1088], "count": 8}, "22": {"resolution": [576, 576], "count": 5}, "23": {"resolution": [576, 768], "count": 1}, "24": {"resolution": [576, 832], "count": 667}, "25": {"resolution": [576, 896], "count": 9601}, "26": {"resolution": [576, 960], "count": 872}, "27": {"resolution": [576, 1024], "count": 17}, "28": {"resolution": [640, 640], "count": 3}, "29": {"resolution": [640, 768], "count": 7}, "30": {"resolution": [640, 832], "count": 608}, "31": {"resolution": [640, 896], "count": 90}, "32": {"resolution": [704, 640], "count": 1}, "33": {"resolution": [704, 704], "count": 11}, "34": {"resolution": [704, 768], "count": 1}, "35": {"resolution": [704, 832], "count": 1}, "36": {"resolution": [768, 640], "count": 225}, "37": {"resolution": [768, 704], "count": 6}, "38": {"resolution": [768, 768], "count": 74442}, "39": {"resolution": [832, 576], "count": 23784}, "40": {"resolution": [832, 640], "count": 554}, "41": {"resolution": [896, 512], "count": 1235}, "42": {"resolution": [896, 576], "count": 50}, "43": {"resolution": [896, 640], "count": 88}, "44": {"resolution": [960, 512], "count": 165}, "45": {"resolution": [960, 576], "count": 5246}, "46": {"resolution": [1024, 448], "count": 5}, "47": {"resolution": [1024, 512], "count": 1187}, "48": {"resolution": [1024, 576], "count": 40}, "49": {"resolution": [1088, 384], "count": 70}, "50": {"resolution": [1088, 448], "count": 36}, "51": {"resolution": [1088, 512], "count": 3}, "52": {"resolution": [1216, 448], "count": 36}, "53": {"resolution": [1344, 320], "count": 29}, "54": {"resolution": [1536, 384], "count": 1}}, "mean_img_ar_error": 0.01693107810697896}", ### Speeds, Sizes, Times ss_resolution: "(768, 768)", ss_v2: "True", ss_cache_latents: "False", ss_unet_lr: "2e-07", ss_num_reg_images: "0", ss_max_token_length: "225", ss_lr_scheduler: "linear", ss_reg_dataset_dirs: "{}", ss_lr_warmup_steps: "303", ss_num_batches_per_epoch: "1222", ss_lowram: "False", ss_multires_noise_iterations: "None", ss_optimizer: "torch.optim.adamw.AdamW(weight_decay=0.01,betas=(0.9, 0.99))", # Evaluation ## Testing Data, Factors & Metrics ### Testing Data More information needed ### Factors More information needed ### Metrics More information needed ## Results More information needed # Model Examination More information needed # Environmental Impact Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** 8xA100 - **Hours used:** 64 - **Cloud Provider:** CoreWeave - **Compute Region:** US Main - **Carbon Emitted:** 6.72 # Technical Specifications [optional] ## Model Architecture and Objective Enhance your model's quality and sharpness using your own pre-trained Unet. ## Compute Infrastructure More information needed ### Hardware 8xA100 ### Software Fully trained only with Kohya S & Shih-Ying Yeh (Kohaku-BlueLeaf) https://arxiv.org/abs/2108.06098 # Citation **BibTeX:** More information needed **APA:** @misc{LyCORIS, author = "Shih-Ying Yeh (Kohaku-BlueLeaf), Yu-Guan Hsieh, Zhidong Gao", title = "LyCORIS - Lora beYond Conventional methods, Other Rank adaptation Implementations for Stable diffusion", howpublished = "\url{https://github.com/KohakuBlueleaf/LyCORIS}", month = "March", year = "2023" } # Glossary [optional] More information needed # More Information [optional] More information needed # Model Card Authors [optional] idle stoev # Model Card Contact di@ffusion.ai # How to Get Started with the Model Use the code below to get started with the model.
Click to expand For a1111 Install https://github.com/KohakuBlueleaf/a1111-sd-webui-lycoris Download di.FFUSION.ai-tXe-FXAA to /models/Lycoris Option1: Insert to prompt No need to split Unet and Text Enc as its only TX encoder there. You can go up to 2x weights Option2: If you need it always ON (ex run a batch from txt file) then you can go to settings / Quicksettings list ![image.png](https://s3.amazonaws.com/moonup/production/uploads/6380cf05f496d57325c12194/3I8yV3dvL0W2cqT1WxI6F.png) add sd_lyco restart and you should have a drop-down now 🤟 🥃 ![image.png](https://s3.amazonaws.com/moonup/production/uploads/6380cf05f496d57325c12194/6COn2V-f3npFPuXCpn2uA.png)