Delete di.FFUSION.ai Text Encoder - SD 2.1 LyCORIS_model_card.md
Browse files
di.FFUSION.ai Text Encoder - SD 2.1 LyCORIS_model_card.md
DELETED
@@ -1,331 +0,0 @@
|
|
1 |
-
---
|
2 |
-
|
3 |
-
---
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
# Model Card for di.FFUSION.ai Text Encoder - SD 2.1 LyCORIS
|
11 |
-
|
12 |
-
<!-- Provide a quick summary of what the model is/does. [Optional] -->
|
13 |
-
di.FFUSION.ai-tXe-FXAA
|
14 |
-
Trained on "121361" images.
|
15 |
-
|
16 |
-
|
17 |
-
Enhance your model's quality and sharpness using your own pre-trained Unet.
|
18 |
-
|
19 |
-
The text encoder (without UNET) is wrapped in LyCORIS. Optimizer: torch.optim.adamw.AdamW(weight_decay=0.01, betas=(0.9, 0.99))
|
20 |
-
|
21 |
-
Network dimension/rank: 768.0 Alpha: 768.0 Module: lycoris.kohya {'conv_dim': '256', 'conv_alpha': '256', 'algo': 'loha'}
|
22 |
-
|
23 |
-
Large size due to Lyco CONV 256
|
24 |
-
|
25 |
-
This is a heavy experimental version we used to test even with sloppy captions (quick WD tags and terrible clip), yet the results were satisfying.
|
26 |
-
|
27 |
-
Note: This is not the text encoder used in the official FFUSION AI model.
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
# Table of Contents
|
33 |
-
|
34 |
-
- [Model Card for di.FFUSION.ai Text Encoder - SD 2.1 LyCORIS](#model-card-for--model_id-)
|
35 |
-
- [Table of Contents](#table-of-contents)
|
36 |
-
- [Table of Contents](#table-of-contents-1)
|
37 |
-
- [Model Details](#model-details)
|
38 |
-
- [Model Description](#model-description)
|
39 |
-
- [Uses](#uses)
|
40 |
-
- [Direct Use](#direct-use)
|
41 |
-
- [Downstream Use [Optional]](#downstream-use-optional)
|
42 |
-
- [Out-of-Scope Use](#out-of-scope-use)
|
43 |
-
- [Bias, Risks, and Limitations](#bias-risks-and-limitations)
|
44 |
-
- [Recommendations](#recommendations)
|
45 |
-
- [Training Details](#training-details)
|
46 |
-
- [Training Data](#training-data)
|
47 |
-
- [Training Procedure](#training-procedure)
|
48 |
-
- [Preprocessing](#preprocessing)
|
49 |
-
- [Speeds, Sizes, Times](#speeds-sizes-times)
|
50 |
-
- [Evaluation](#evaluation)
|
51 |
-
- [Testing Data, Factors & Metrics](#testing-data-factors--metrics)
|
52 |
-
- [Testing Data](#testing-data)
|
53 |
-
- [Factors](#factors)
|
54 |
-
- [Metrics](#metrics)
|
55 |
-
- [Results](#results)
|
56 |
-
- [Model Examination](#model-examination)
|
57 |
-
- [Environmental Impact](#environmental-impact)
|
58 |
-
- [Technical Specifications [optional]](#technical-specifications-optional)
|
59 |
-
- [Model Architecture and Objective](#model-architecture-and-objective)
|
60 |
-
- [Compute Infrastructure](#compute-infrastructure)
|
61 |
-
- [Hardware](#hardware)
|
62 |
-
- [Software](#software)
|
63 |
-
- [Citation](#citation)
|
64 |
-
- [Glossary [optional]](#glossary-optional)
|
65 |
-
- [More Information [optional]](#more-information-optional)
|
66 |
-
- [Model Card Authors [optional]](#model-card-authors-optional)
|
67 |
-
- [Model Card Contact](#model-card-contact)
|
68 |
-
- [How to Get Started with the Model](#how-to-get-started-with-the-model)
|
69 |
-
|
70 |
-
|
71 |
-
# Model Details
|
72 |
-
|
73 |
-
## Model Description
|
74 |
-
|
75 |
-
<!-- Provide a longer summary of what this model is/does. -->
|
76 |
-
di.FFUSION.ai-tXe-FXAA
|
77 |
-
Trained on "121361" images.
|
78 |
-
|
79 |
-
|
80 |
-
Enhance your model's quality and sharpness using your own pre-trained Unet.
|
81 |
-
|
82 |
-
The text encoder (without UNET) is wrapped in LyCORIS. Optimizer: torch.optim.adamw.AdamW(weight_decay=0.01, betas=(0.9, 0.99))
|
83 |
-
|
84 |
-
Network dimension/rank: 768.0 Alpha: 768.0 Module: lycoris.kohya {'conv_dim': '256', 'conv_alpha': '256', 'algo': 'loha'}
|
85 |
-
|
86 |
-
Large size due to Lyco CONV 256
|
87 |
-
|
88 |
-
This is a heavy experimental version we used to test even with sloppy captions (quick WD tags and terrible clip), yet the results were satisfying.
|
89 |
-
|
90 |
-
Note: This is not the text encoder used in the official FFUSION AI model.
|
91 |
-
|
92 |
-
- **Developed by:** F, F, u, s, i, o, n, ., a, i
|
93 |
-
- **Shared by [Optional]:** i, d, l, e, , s, t, o, e, v
|
94 |
-
- **Model type:** Language model
|
95 |
-
- **Language(s) (NLP):** en
|
96 |
-
- **License:** creativeml-openrail-m
|
97 |
-
- **Parent Model:** More information needed
|
98 |
-
- **Resources for more information:** More information needed
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
# Uses
|
103 |
-
|
104 |
-
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
105 |
-
|
106 |
-
## Direct Use
|
107 |
-
|
108 |
-
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
109 |
-
<!-- If the user enters content, print that. If not, but they enter a task in the list, use that. If neither, say "more info needed." -->
|
110 |
-
|
111 |
-
The text encoder (without UNET) is wrapped in LyCORIS. Optimizer: torch.optim.adamw.AdamW(weight_decay=0.01, betas=(0.9, 0.99))
|
112 |
-
|
113 |
-
Network dimension/rank: 768.0 Alpha: 768.0 Module: lycoris.kohya {'conv_dim': '256', 'conv_alpha': '256', 'algo': 'loha'}
|
114 |
-
|
115 |
-
Large size due to Lyco CONV 256
|
116 |
-
|
117 |
-
|
118 |
-
## Downstream Use [Optional]
|
119 |
-
|
120 |
-
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
121 |
-
<!-- If the user enters content, print that. If not, but they enter a task in the list, use that. If neither, say "more info needed." -->
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
## Out-of-Scope Use
|
127 |
-
|
128 |
-
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
129 |
-
<!-- If the user enters content, print that. If not, but they enter a task in the list, use that. If neither, say "more info needed." -->
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
# Bias, Risks, and Limitations
|
135 |
-
|
136 |
-
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
137 |
-
|
138 |
-
Significant research has explored bias and fairness issues with language models (see, e.g., [Sheng et al. (2021)](https://aclanthology.org/2021.acl-long.330.pdf) and [Bender et al. (2021)](https://dl.acm.org/doi/pdf/10.1145/3442188.3445922)). Predictions generated by the model may include disturbing and harmful stereotypes across protected classes; identity characteristics; and sensitive, social, and occupational groups.
|
139 |
-
|
140 |
-
|
141 |
-
## Recommendations
|
142 |
-
|
143 |
-
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
# Training Details
|
150 |
-
|
151 |
-
## Training Data
|
152 |
-
|
153 |
-
<!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
154 |
-
|
155 |
-
Trained on "121361" images.
|
156 |
-
|
157 |
-
ss_caption_tag_dropout_rate: "0.0",
|
158 |
-
ss_multires_noise_discount: "0.3",
|
159 |
-
ss_mixed_precision: "bf16",
|
160 |
-
ss_text_encoder_lr: "1e-07",
|
161 |
-
ss_keep_tokens: "3",
|
162 |
-
ss_network_args: "{"conv_dim": "256", "conv_alpha": "256", "algo": "loha"}",
|
163 |
-
ss_caption_dropout_rate: "0.02",
|
164 |
-
ss_flip_aug: "False",
|
165 |
-
ss_learning_rate: "2e-07",
|
166 |
-
ss_sd_model_name: "stabilityai/stable-diffusion-2-1-base",
|
167 |
-
ss_max_grad_norm: "1.0",
|
168 |
-
ss_num_epochs: "2",
|
169 |
-
ss_gradient_checkpointing: "False",
|
170 |
-
ss_face_crop_aug_range: "None",
|
171 |
-
ss_epoch: "2",
|
172 |
-
ss_num_train_images: "121361",
|
173 |
-
ss_color_aug: "False",
|
174 |
-
ss_gradient_accumulation_steps: "1",
|
175 |
-
ss_total_batch_size: "100",
|
176 |
-
ss_prior_loss_weight: "1.0",
|
177 |
-
ss_training_comment: "None",
|
178 |
-
ss_network_dim: "768",
|
179 |
-
ss_output_name: "FusionaMEGA1tX",
|
180 |
-
ss_max_bucket_reso: "1024",
|
181 |
-
ss_network_alpha: "768.0",
|
182 |
-
ss_steps: "2444",
|
183 |
-
ss_shuffle_caption: "True",
|
184 |
-
ss_training_finished_at: "1684158038.0763328",
|
185 |
-
ss_min_bucket_reso: "256",
|
186 |
-
ss_noise_offset: "0.09",
|
187 |
-
ss_enable_bucket: "True",
|
188 |
-
ss_batch_size_per_device: "20",
|
189 |
-
ss_max_train_steps: "2444",
|
190 |
-
ss_network_module: "lycoris.kohya",
|
191 |
-
|
192 |
-
|
193 |
-
## Training Procedure
|
194 |
-
|
195 |
-
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
196 |
-
|
197 |
-
### Preprocessing
|
198 |
-
|
199 |
-
"{"buckets": {"0": {"resolution": [192, 256], "count": 1}, "1": {"resolution": [192, 320], "count": 1}, "2": {"resolution": [256, 384], "count": 1}, "3": {"resolution": [256, 512], "count": 1}, "4": {"resolution": [384, 576], "count": 2}, "5": {"resolution": [384, 640], "count": 2}, "6": {"resolution": [384, 704], "count": 1}, "7": {"resolution": [384, 1088], "count": 15}, "8": {"resolution": [448, 448], "count": 5}, "9": {"resolution": [448, 576], "count": 1}, "10": {"resolution": [448, 640], "count": 1}, "11": {"resolution": [448, 768], "count": 1}, "12": {"resolution": [448, 832], "count": 1}, "13": {"resolution": [448, 1088], "count": 25}, "14": {"resolution": [448, 1216], "count": 1}, "15": {"resolution": [512, 640], "count": 2}, "16": {"resolution": [512, 768], "count": 10}, "17": {"resolution": [512, 832], "count": 3}, "18": {"resolution": [512, 896], "count": 1525}, "19": {"resolution": [512, 960], "count": 2}, "20": {"resolution": [512, 1024], "count": 665}, "21": {"resolution": [512, 1088], "count": 8}, "22": {"resolution": [576, 576], "count": 5}, "23": {"resolution": [576, 768], "count": 1}, "24": {"resolution": [576, 832], "count": 667}, "25": {"resolution": [576, 896], "count": 9601}, "26": {"resolution": [576, 960], "count": 872}, "27": {"resolution": [576, 1024], "count": 17}, "28": {"resolution": [640, 640], "count": 3}, "29": {"resolution": [640, 768], "count": 7}, "30": {"resolution": [640, 832], "count": 608}, "31": {"resolution": [640, 896], "count": 90}, "32": {"resolution": [704, 640], "count": 1}, "33": {"resolution": [704, 704], "count": 11}, "34": {"resolution": [704, 768], "count": 1}, "35": {"resolution": [704, 832], "count": 1}, "36": {"resolution": [768, 640], "count": 225}, "37": {"resolution": [768, 704], "count": 6}, "38": {"resolution": [768, 768], "count": 74442}, "39": {"resolution": [832, 576], "count": 23784}, "40": {"resolution": [832, 640], "count": 554}, "41": {"resolution": [896, 512], "count": 1235}, "42": {"resolution": [896, 576], "count": 50}, "43": {"resolution": [896, 640], "count": 88}, "44": {"resolution": [960, 512], "count": 165}, "45": {"resolution": [960, 576], "count": 5246}, "46": {"resolution": [1024, 448], "count": 5}, "47": {"resolution": [1024, 512], "count": 1187}, "48": {"resolution": [1024, 576], "count": 40}, "49": {"resolution": [1088, 384], "count": 70}, "50": {"resolution": [1088, 448], "count": 36}, "51": {"resolution": [1088, 512], "count": 3}, "52": {"resolution": [1216, 448], "count": 36}, "53": {"resolution": [1344, 320], "count": 29}, "54": {"resolution": [1536, 384], "count": 1}}, "mean_img_ar_error": 0.01693107810697896}",
|
200 |
-
|
201 |
-
### Speeds, Sizes, Times
|
202 |
-
|
203 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
204 |
-
|
205 |
-
ss_resolution: "(768, 768)",
|
206 |
-
ss_v2: "True",
|
207 |
-
ss_cache_latents: "False",
|
208 |
-
ss_unet_lr: "2e-07",
|
209 |
-
ss_num_reg_images: "0",
|
210 |
-
ss_max_token_length: "225",
|
211 |
-
ss_lr_scheduler: "linear",
|
212 |
-
ss_reg_dataset_dirs: "{}",
|
213 |
-
ss_lr_warmup_steps: "303",
|
214 |
-
ss_num_batches_per_epoch: "1222",
|
215 |
-
ss_lowram: "False",
|
216 |
-
ss_multires_noise_iterations: "None",
|
217 |
-
ss_optimizer: "torch.optim.adamw.AdamW(weight_decay=0.01,betas=(0.9, 0.99))",
|
218 |
-
|
219 |
-
# Evaluation
|
220 |
-
|
221 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
222 |
-
|
223 |
-
## Testing Data, Factors & Metrics
|
224 |
-
|
225 |
-
### Testing Data
|
226 |
-
|
227 |
-
<!-- This should link to a Data Card if possible. -->
|
228 |
-
|
229 |
-
More information needed
|
230 |
-
|
231 |
-
|
232 |
-
### Factors
|
233 |
-
|
234 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
235 |
-
|
236 |
-
More information needed
|
237 |
-
|
238 |
-
### Metrics
|
239 |
-
|
240 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
241 |
-
|
242 |
-
More information needed
|
243 |
-
|
244 |
-
## Results
|
245 |
-
|
246 |
-
More information needed
|
247 |
-
|
248 |
-
# Model Examination
|
249 |
-
|
250 |
-
More information needed
|
251 |
-
|
252 |
-
# Environmental Impact
|
253 |
-
|
254 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
255 |
-
|
256 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
257 |
-
|
258 |
-
- **Hardware Type:** 8xA100
|
259 |
-
- **Hours used:** 64
|
260 |
-
- **Cloud Provider:** CoreWeave
|
261 |
-
- **Compute Region:** US Main
|
262 |
-
- **Carbon Emitted:** 6.72
|
263 |
-
|
264 |
-
# Technical Specifications [optional]
|
265 |
-
|
266 |
-
## Model Architecture and Objective
|
267 |
-
|
268 |
-
Enhance your model's quality and sharpness using your own pre-trained Unet.
|
269 |
-
|
270 |
-
|
271 |
-
## Compute Infrastructure
|
272 |
-
|
273 |
-
More information needed
|
274 |
-
|
275 |
-
### Hardware
|
276 |
-
|
277 |
-
8xA100
|
278 |
-
|
279 |
-
### Software
|
280 |
-
|
281 |
-
Fully trained only with Kohya S & Shih-Ying Yeh (Kohaku-BlueLeaf)
|
282 |
-
https://arxiv.org/abs/2108.06098
|
283 |
-
|
284 |
-
# Citation
|
285 |
-
|
286 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
287 |
-
|
288 |
-
**BibTeX:**
|
289 |
-
|
290 |
-
More information needed
|
291 |
-
|
292 |
-
**APA:**
|
293 |
-
|
294 |
-
@misc{LyCORIS,
|
295 |
-
author = "Shih-Ying Yeh (Kohaku-BlueLeaf), Yu-Guan Hsieh, Zhidong Gao",
|
296 |
-
title = "LyCORIS - Lora beYond Conventional methods, Other Rank adaptation Implementations for Stable diffusion",
|
297 |
-
howpublished = "\url{https://github.com/KohakuBlueleaf/LyCORIS}",
|
298 |
-
month = "March",
|
299 |
-
year = "2023"
|
300 |
-
}
|
301 |
-
|
302 |
-
# Glossary [optional]
|
303 |
-
|
304 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
305 |
-
|
306 |
-
More information needed
|
307 |
-
|
308 |
-
# More Information [optional]
|
309 |
-
|
310 |
-
More information needed
|
311 |
-
|
312 |
-
# Model Card Authors [optional]
|
313 |
-
|
314 |
-
<!-- This section provides another layer of transparency and accountability. Whose views is this model card representing? How many voices were included in its construction? Etc. -->
|
315 |
-
|
316 |
-
i, d, l, e, , s, t, o, e, v
|
317 |
-
|
318 |
-
# Model Card Contact
|
319 |
-
|
320 |
-
d, i, @, f, f, u, s, i, o, n, ., a, i
|
321 |
-
|
322 |
-
# How to Get Started with the Model
|
323 |
-
|
324 |
-
Use the code below to get started with the model.
|
325 |
-
|
326 |
-
<details>
|
327 |
-
<summary> Click to expand </summary>
|
328 |
-
|
329 |
-
More information needed
|
330 |
-
|
331 |
-
</details>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|