--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-timit-demo-google-colab results: [] --- # wav2vec2-base-timit-demo-google-colab This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5725 - Wer: 0.3413 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 3.508 | 1.0 | 500 | 1.9315 | 0.9962 | | 0.8832 | 2.01 | 1000 | 0.5552 | 0.5191 | | 0.4381 | 3.01 | 1500 | 0.4451 | 0.4574 | | 0.2983 | 4.02 | 2000 | 0.4096 | 0.4265 | | 0.2232 | 5.02 | 2500 | 0.4280 | 0.4083 | | 0.1811 | 6.02 | 3000 | 0.4307 | 0.3942 | | 0.1548 | 7.03 | 3500 | 0.4453 | 0.3889 | | 0.1367 | 8.03 | 4000 | 0.5043 | 0.4138 | | 0.1238 | 9.04 | 4500 | 0.4530 | 0.3807 | | 0.1072 | 10.04 | 5000 | 0.4435 | 0.3660 | | 0.0978 | 11.04 | 5500 | 0.4739 | 0.3676 | | 0.0887 | 12.05 | 6000 | 0.5052 | 0.3761 | | 0.0813 | 13.05 | 6500 | 0.5098 | 0.3619 | | 0.0741 | 14.06 | 7000 | 0.4666 | 0.3602 | | 0.0654 | 15.06 | 7500 | 0.5642 | 0.3657 | | 0.0589 | 16.06 | 8000 | 0.5489 | 0.3638 | | 0.0559 | 17.07 | 8500 | 0.5260 | 0.3598 | | 0.0562 | 18.07 | 9000 | 0.5250 | 0.3640 | | 0.0448 | 19.08 | 9500 | 0.5215 | 0.3569 | | 0.0436 | 20.08 | 10000 | 0.5117 | 0.3560 | | 0.0412 | 21.08 | 10500 | 0.4910 | 0.3570 | | 0.0336 | 22.09 | 11000 | 0.5221 | 0.3524 | | 0.031 | 23.09 | 11500 | 0.5278 | 0.3480 | | 0.0339 | 24.1 | 12000 | 0.5353 | 0.3486 | | 0.0278 | 25.1 | 12500 | 0.5342 | 0.3462 | | 0.0251 | 26.1 | 13000 | 0.5399 | 0.3439 | | 0.0242 | 27.11 | 13500 | 0.5626 | 0.3431 | | 0.0214 | 28.11 | 14000 | 0.5749 | 0.3408 | | 0.0216 | 29.12 | 14500 | 0.5725 | 0.3413 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.12.0+cu113 - Datasets 1.18.3 - Tokenizers 0.12.1