--- license: apache-2.0 base_model: facebook/wav2vec2-xls-r-300m tags: - generated_from_trainer datasets: - common_voice_13_0 metrics: - wer model-index: - name: wav2vec2-xlsr-53-CV-demo-google-colab-Ezra_William_Prod15 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: common_voice_13_0 type: common_voice_13_0 config: id split: test args: id metrics: - name: Wer type: wer value: 0.29899520648967554 --- # wav2vec2-xlsr-53-CV-demo-google-colab-Ezra_William_Prod15 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice_13_0 dataset. It achieves the following results on the evaluation set: - Loss: 0.3344 - Wer: 0.2990 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 12 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 2.9553 | 1.0 | 278 | 2.9166 | 1.0 | | 2.8419 | 2.0 | 556 | 2.1745 | 1.0 | | 0.9699 | 3.0 | 834 | 0.5752 | 0.5677 | | 0.6348 | 4.0 | 1112 | 0.4500 | 0.4575 | | 0.5375 | 5.0 | 1390 | 0.3974 | 0.4070 | | 0.4354 | 6.0 | 1668 | 0.3678 | 0.3576 | | 0.3885 | 7.0 | 1946 | 0.3756 | 0.3539 | | 0.3737 | 8.0 | 2224 | 0.3655 | 0.3345 | | 0.336 | 9.0 | 2502 | 0.3472 | 0.3215 | | 0.3014 | 10.0 | 2780 | 0.3395 | 0.3095 | | 0.3103 | 11.0 | 3058 | 0.3311 | 0.3032 | | 0.2965 | 12.0 | 3336 | 0.3344 | 0.2990 | ### Framework versions - Transformers 4.40.0 - Pytorch 2.2.2+cu121 - Datasets 2.19.0 - Tokenizers 0.19.1