--- license: apache-2.0 base_model: facebook/wav2vec2-xls-r-300m tags: - generated_from_trainer datasets: - xtreme_s metrics: - wer model-index: - name: wav2vec2-base-fleurs-CommonVoice-demo-google-colab-Ezra_William_Prod1 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: xtreme_s type: xtreme_s config: fleurs.id_id split: test args: fleurs.id_id metrics: - name: Wer type: wer value: 1.0 --- # wav2vec2-base-fleurs-CommonVoice-demo-google-colab-Ezra_William_Prod1 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the xtreme_s dataset. It achieves the following results on the evaluation set: - Loss: 2.1819 - Wer: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 200 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:---:| | 7.236 | 6.15 | 100 | 2.9095 | 1.0 | | 2.8926 | 12.31 | 200 | 2.8601 | 1.0 | | 2.871 | 18.46 | 300 | 2.8546 | 1.0 | | 2.763 | 24.62 | 400 | 2.1819 | 1.0 | ### Framework versions - Transformers 4.37.1 - Pytorch 2.1.2+cu121 - Datasets 2.16.1 - Tokenizers 0.15.1