--- license: cc-by-sa-4.0 --- # IndoBERTweet-IdentityAttack ## Model Description IndoBERTweet fine-tuned on IndoToxic2024 dataset, with an accuracy of 0.89 and macro-F1 of 0.78. Performances are obtained through stratified 10-fold cross-validation. ## Supported Tokenizer - **indolem/indobertweet-base-uncased** ## Example Code ```python import torch from transformers import AutoModelForSequenceClassification, AutoTokenizer # Specify the model and tokenizer name model_name = "Exqrch/IndoBERTweet-IdentityAttack" tokenizer_name = "indolem/indobertweet-base-uncased" # Load the pre-trained model model = AutoModelForSequenceClassification.from_pretrained(model_name) # Load the tokenizer tokenizer = AutoTokenizer.from_pretrained(tokenizer_name) text = "selamat pagi semua!" output = model(**tokenizer(text, return_tensors="pt")) logits = output.logits # Get the predicted class label predicted_class = torch.argmax(logits, dim=-1).item() print(predicted_class) --- Output --- > 0 --- End of Output --- ``` ## Limitations Trained only on Indonesian texts. No information on code-switched text performance. ## Sample Output ``` Model name: Exqrch/IndoBERTweet-IdentityAttack Text 1: ayolah, jaga kebersihan bersama Prediction: 0 Text 2: dia itu loh, udah hitam, dengkil lagi Prediction: 1 ``` ## Citation If used, please cite: ``` @article{susanto2024indotoxic2024, title={IndoToxic2024: A Demographically-Enriched Dataset of Hate Speech and Toxicity Types for Indonesian Language}, author={Lucky Susanto and Musa Izzanardi Wijanarko and Prasetia Anugrah Pratama and Traci Hong and Ika Idris and Alham Fikri Aji and Derry Wijaya}, year={2024}, eprint={2406.19349}, archivePrefix={arXiv}, primaryClass={cs.CL}, url={https://arxiv.org/abs/2406.19349}, } ```