--- pipeline_tag: token-classification tags: - named-entity-recognition - sequence-tagger-model widget: - text: Mit navn er Amadeus Wolfgang, og jeg bor i Berlin inference: parameters: aggregation_strategy: simple grouped_entities: true language: - da --- xlm-roberta model trained on [daner](https://aclanthology.org/2020.lrec-1.565/), performing 97.1 f1-Macro on test set. | Test metric | Results | |-------------------------|---------------------------| | test_f1_mac_dane_ner | 0.9713183641433716 | | test_loss_dane_ner | 0.11384682357311249 | | test_prec_mac_dane_ner | 0.8712055087089539 | | test_rec_mac_dane_ner | 0.8684446811676025 | ```python from transformers import AutoTokenizer, AutoModelForTokenClassification from transformers import pipeline tokenizer = AutoTokenizer.from_pretrained("EvanD/xlm-roberta-base-danish-ner-daner") ner_model = AutoModelForTokenClassification.from_pretrained("EvanD/xlm-roberta-base-danish-ner-daner") nlp = pipeline("ner", model=ner_model, tokenizer=tokenizer, aggregation_strategy="simple") example = "Mit navn er Amadeus Wolfgang, og jeg bor i Berlin" ner_results = nlp(example) print(ner_results) ```