{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "extract_features": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x78e895308300>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1690489854939687375, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAB5elL6uxE8/mMdNPUe23b5unPe9K7etPQAAAAAAAAAAndKbPtwxe7waoXC+VJ3QvaaKuL2I+vi+AAAAAAAAgD/zNXk+Uo8LPilhpL47N4W+RUo8vUWczzwAAAAAAAAAAJp/QD4cT0u8jT+nu99ewzm487C9/nuYOgAAgD8AAIA/zayAOkgHibo8iC+8dHSfNMSHXLr44BG0AACAPwAAgD/QRsG+YvidP25gcb5st8q+2cLJvu5bGj4AAAAAAAAAAEAj/732HDQ75VHXPZtKcLxnGgS9G9lXPQAAgD8AAIA/4HM/vtubp7x2b6g6mWATOSC8Ez5bBt25AACAPwAAgD+NW589XFMfuvsFHL30iDGz5BqYO5CVXDMAAIA/AACAP7MZLz3c4pQ/hWv/PYKhC79u9Zg8PPapPQAAAAAAAAAAhlspPu6xiLztXCk7JBWQuZe16b0L9pK6AACAPwAAgD/g+Tm+wTG+vCQOgTrS1PU4DBwtPqwJs7kAAIA/AACAP8B3x72Pcl66smctM34F8i7Nx2+7pYDRswAAgD8AAIA/sxa0PRRIubpOk46zcePJr/1IOrmBJb8zAAAAAAAAgD+aAKE97RaFPyGRST6VNBm/Pnq0Paoc6DsAAAAAAAAAAHDxnz6x7Ws+W/WLvrDiF78/644+ykR0vgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "", ":serialized:": "gAWVCAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGzdivHLideMAWyUTTcBjAF0lEdAmMieqzZ6EHV9lChoBkdAcKRoGY8dP2gHS+hoCEdAmMkfra/RFHV9lChoBkdASpTvXsgMdGgHS8JoCEdAmMljSgGr0nV9lChoBkdAcgRe/Yao/GgHS8xoCEdAmMr8fJV81HV9lChoBkdAcFJ0L+glGGgHS8poCEdAmMvX8O09hnV9lChoBkdAcQdJL/S6UmgHS+5oCEdAmMwrKeTV2HV9lChoBkdAI7xKYiPhh2gHS2NoCEdAmMxY2CNCJHV9lChoBkdAcIugAp8WsWgHTTIBaAhHQJjNCKTB68h1fZQoaAZHQHA+X3g1m8NoB01cAWgIR0CYzT4h2W6cdX2UKGgGR0By9DTodMkAaAdLxmgIR0CY0Q9Aood/dX2UKGgGR0BySzKJVKf4aAdNHQFoCEdAmNEmxIJ7cHV9lChoBkdAW0xEfDDTB2gHTegDaAhHQJjRPSjQAuJ1fZQoaAZHQHJ8KCL/CIloB00UAWgIR0CY1LeOGTLXdX2UKGgGR0BxKQ+2VmjCaAdL2mgIR0CY1SshxHXmdX2UKGgGR0BwhYnNPgvUaAdL5GgIR0CY1UwsoUi7dX2UKGgGR0BwzOtknTiLaAdL0GgIR0CY1ZxrzoU0dX2UKGgGR0BxQyb6P8yfaAdL7GgIR0CY1iC7sfJWdX2UKGgGR0BgOHrQgLZ0aAdN6ANoCEdAmStHcYZVGXV9lChoBkdAcd++o99tuWgHTRUBaAhHQJksZKNAC4l1fZQoaAZHQGaGnC4z7/JoB03oA2gIR0CZLRD7IkqudX2UKGgGR0ByT6jnFHawaAdL42gIR0CZLnNc4YJmdX2UKGgGR0BxBoWnCO3laAdL7WgIR0CZLskDZDiPdX2UKGgGR0BiPFNcnmaIaAdN6ANoCEdAmTEXjlxOtXV9lChoBkdAbrIe/Yao/GgHS9NoCEdAmTFlHJ9y93V9lChoBkdAYuDV3ljmS2gHTegDaAhHQJkxjtPYWcl1fZQoaAZHQHEqVNtZV4poB0vsaAhHQJky0ZDRc/t1fZQoaAZHQHIjSVW0Z3toB0vcaAhHQJkzEPd2xIJ1fZQoaAZHQG38LNwBHTZoB0vOaAhHQJkz/CEYfnx1fZQoaAZHQHLPURradtloB0vCaAhHQJk0gxqO9391fZQoaAZHQHBWIAn2IwdoB0vUaAhHQJk15WyTpxF1fZQoaAZHQFz5Net0V8FoB03oA2gIR0CZNm47zTWodX2UKGgGR0Bt18+eOGTLaAdL6GgIR0CZN/iSq2jPdX2UKGgGR0ByDUnE2pAEaAdNbgFoCEdAmTgqc7Qsw3V9lChoBkdAbkjYHPeHi2gHS8poCEdAmTsUwBYFJXV9lChoBkdAbwxC4SYgJWgHS9poCEdAmTt+rZJ04nV9lChoBkdAcN5vYe1a4mgHS/5oCEdAmTuJ3os7MnV9lChoBkdAcITT9sJpnGgHS+toCEdAmT1n974SH3V9lChoBkdAcf69eQdS22gHS+NoCEdAmT2dIXj2jHV9lChoBkdAbcCIhyKekGgHS9JoCEdAmT7PUnXumnV9lChoBkdAcHfBRQ79ymgHS+NoCEdAmT75CBwuNHV9lChoBkdAcgrgs9SuQ2gHTQwBaAhHQJlC49gWrOt1fZQoaAZHQHOufuCwr2BoB0vAaAhHQJlDFEgGKQ91fZQoaAZHQG9uDZL7GedoB0vZaAhHQJlEnI3irDJ1fZQoaAZHQHC50J4SpR5oB0vZaAhHQJlEqLOzIFN1fZQoaAZHQHFLRLXcxj9oB0vFaAhHQJlFtXmvGId1fZQoaAZHQGJJoOx0MgFoB03oA2gIR0CZRq3gk1MudX2UKGgGR0BuPpx1gYxdaAdLyGgIR0CZRz/9YOlPdX2UKGgGR0BtlgDcM3IdaAdL12gIR0CZSAOnl4kedX2UKGgGR0BfVLR0EHMVaAdN6ANoCEdAmUgivLX+VHV9lChoBkdAbpCl7dBSk2gHS/BoCEdAmUzM9W6shnV9lChoBkdAbpdUDuBtlGgHS+FoCEdAmU3g7kn1F3V9lChoBkdAYdV1s+FDfGgHTegDaAhHQJlOGO6unuR1fZQoaAZHQG6ERf4REndoB0vwaAhHQJlOlhLGrCF1fZQoaAZHQHDkR9PUKAtoB0vKaAhHQJlPAf3evZB1fZQoaAZHQHDB3NLUTctoB001AWgIR0CZT/5FPSDzdX2UKGgGR0Bx7/L8rI5paAdNBwFoCEdAmVCZ2ZAprnV9lChoBkdAcZ/XJo0yg2gHS+BoCEdAmVFl+mWMTHV9lChoBkdAcVyiwB5ooWgHTQYBaAhHQJlSCbRWtEJ1fZQoaAZHQGHoPtdAxBVoB03oA2gIR0CZUpe54GD+dX2UKGgGR0BwGv37DVH4aAdL5GgIR0CZVi/lhgE2dX2UKGgGR0BvwqKUFB6baAdL2WgIR0CZVvf5k9U0dX2UKGgGR0BvPxC6Ymb9aAdL2mgIR0CZV+wu/UONdX2UKGgGR0Bh7FHpbD/EaAdN6ANoCEdAmVfsdgfEGnV9lChoBkdAcEO5CF9KEmgHS9RoCEdAmVk3jIaLoHV9lChoBkdAcYtT8pCrtGgHS8BoCEdAmVk4NiH6/XV9lChoBkdAcPDkGzKLbmgHS/VoCEdAmVnwz544ZXV9lChoBkdAXx44KhL5AWgHTegDaAhHQJlaGMJhOQB1fZQoaAZHQGJ26QV9F4NoB03oA2gIR0CZWnpIMBp6dX2UKGgGR0ByVostkFwDaAdL1WgIR0CZXoJtzjm0dX2UKGgGR0BxVpgOSW7faAdL2mgIR0CZX37hegL7dX2UKGgGR0Bx7WMHbAUMaAdLxmgIR0CZX5W+GoJidX2UKGgGR0BfJF0xM36zaAdN6ANoCEdAmWDiYsunM3V9lChoBkdAb4kSs8xKx2gHS+doCEdAmWD5bMX7+HV9lChoBkdAcPbsLv1DjWgHTZEBaAhHQJlinP0I1Lt1fZQoaAZHQG7XaQmu1WtoB0vkaAhHQJljB4Oc2BJ1fZQoaAZHQG/50se4kNZoB00FAWgIR0CZZMh1klNUdX2UKGgGR0BhC74SHuZ1aAdN6ANoCEdAmWZtY4hllXV9lChoBkdAcV1bS7Xg+GgHTXQBaAhHQJloCPNmlIp1fZQoaAZHQG1NMrVe8f5oB0vlaAhHQJlo4tdzGPx1fZQoaAZHQHECD8LrontoB0vGaAhHQJlo958jRlZ1fZQoaAZHQHBW1TNt65ZoB00JAWgIR0CZamydWhh6dX2UKGgGR0BxxCCXhOxjaAdLyGgIR0CZasJFb3XadX2UKGgGR0Bwld8BuGbkaAdNIAFoCEdAmWy/kBCD3HV9lChoBkdAbx3g7YChe2gHS/BoCEdAmWzgco6S1XV9lChoBkdAcUXYtg8bJmgHTQgBaAhHQJlvvlo11nx1fZQoaAZHQHGLKkAPuohoB0v1aAhHQJlwn1e0G/x1fZQoaAZHQGMv0MgEEDBoB03oA2gIR0CZcMD50r9VdX2UKGgGR0BwvrNorWiDaAdL32gIR0CZcVcKgIyCdX2UKGgGR0ByOxmcvugIaAdL/mgIR0CZc6nDBMzudX2UKGgGR0BwzpxOtW+5aAdLymgIR0CZdXKHfuTidX2UKGgGR0Bw3lsdkrf+aAdLymgIR0CZdZU9IPK/dX2UKGgGR0Bhu5ZQpF1CaAdN6ANoCEdAmXcGc8TzunV9lChoBkdAYAjxGUfPomgHTegDaAhHQJl3vEn9ehR1fZQoaAZHQHEwhHG0eEJoB00yAWgIR0CZd/Fz+3pfdX2UKGgGR0BxaGNlyzX0aAdLwGgIR0CZeRIXCTEBdX2UKGgGR0BvID2USqVAaAdNCAFoCEdAmXsrJnxri3V9lChoBkdAYaGSowVTJmgHTegDaAhHQJl7Q5cTrVx1fZQoaAZHQHFaTAWSEDhoB00SAWgIR0CZfFo1k1/EdX2UKGgGR0BxFx6iTMaCaAdNuQFoCEdAmX0jeO4oZ3V9lChoBkdAcW3anrIHT2gHS8FoCEdAmX2dRWLgoHVlLg=="}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "observation_space": {":type:": "", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.6", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}