--- tags: - spacy - token-classification language: - en model-index: - name: en_pipeline results: - task: name: NER type: token-classification metrics: - name: NER Precision type: precision value: 0.9006239689 - name: NER Recall type: recall value: 1.0 - name: NER F Score type: f_score value: 0.9430596847 --- | Feature | Description | | --- | --- | | **Name** | `en_pipeline` | | **Version** | `0.0.0` | | **spaCy** | `>=3.7.4,<3.8.0` | | **Default Pipeline** | `tok2vec`, `ner` | | **Components** | `tok2vec`, `ner` | | **Vectors** | 0 keys, 0 unique vectors (0 dimensions) | | **Sources** | n/a | | **License** | n/a | | **Author** | [n/a]() | ### Label Scheme
View label scheme (9 labels for 1 components) | Component | Labels | | --- | --- | | **`ner`** | `Certifications`, `Duties and Responsibilities`, `Education`, `Experience`, `Industry`, `Job Title`, `Skills`, `Soft Skills`, `Tools and Technologies` |
### Accuracy | Type | Score | | --- | --- | | `ENTS_F` | 94.31 | | `ENTS_P` | 90.06 | | `ENTS_R` | 100.00 | | `TOK2VEC_LOSS` | 483216.60 | | `NER_LOSS` | 858473.26 |