#!/usr/bin/env python # Copyright (c) Alibaba, Inc. and its affiliates. import copy import os import pickle import shutil import socket import subprocess import sys import tarfile import tempfile import unittest from collections import OrderedDict from collections.abc import Mapping from os.path import expanduser import numpy as np import requests from modelscope.hub.constants import DEFAULT_CREDENTIALS_PATH TEST_LEVEL = 2 TEST_LEVEL_STR = 'TEST_LEVEL' # for user citest and sdkdev TEST_ACCESS_TOKEN1 = os.environ.get('TEST_ACCESS_TOKEN_CITEST', None) TEST_ACCESS_TOKEN2 = os.environ.get('TEST_ACCESS_TOKEN_SDKDEV', None) TEST_MODEL_CHINESE_NAME = '内部测试模型' TEST_MODEL_ORG = 'citest' def delete_credential(): path_credential = expanduser(DEFAULT_CREDENTIALS_PATH) shutil.rmtree(path_credential, ignore_errors=True) def test_level(): global TEST_LEVEL if TEST_LEVEL_STR in os.environ: TEST_LEVEL = int(os.environ[TEST_LEVEL_STR]) return TEST_LEVEL def require_tf(test_case): test_case = unittest.skip('test requires TensorFlow')(test_case) return test_case def require_torch(test_case): return test_case def set_test_level(level: int): global TEST_LEVEL TEST_LEVEL = level class DummyTorchDataset: def __init__(self, feat, label, num) -> None: self.feat = feat self.label = label self.num = num def __getitem__(self, index): import torch return {'feat': torch.Tensor(self.feat), 'labels': torch.Tensor(self.label)} def __len__(self): return self.num def create_dummy_test_dataset(feat, label, num): return DummyTorchDataset(feat, label, num) def download_and_untar(fpath, furl, dst) -> str: if not os.path.exists(fpath): r = requests.get(furl) with open(fpath, 'wb') as f: f.write(r.content) file_name = os.path.basename(fpath) root_dir = os.path.dirname(fpath) target_dir_name = os.path.splitext(os.path.splitext(file_name)[0])[0] target_dir_path = os.path.join(root_dir, target_dir_name) # untar the file t = tarfile.open(fpath) t.extractall(path=dst) return target_dir_path def get_case_model_info(): status_code, result = subprocess.getstatusoutput( 'grep -rn "damo/" tests/ | grep -v ".pyc" | grep -v "Binary file" | grep -v run.py ') lines = result.split('\n') test_cases = OrderedDict() model_cases = OrderedDict() for line in lines: # "tests/msdatasets/test_ms_dataset.py:92: model_id = 'damo/bert-base-sst2'" line = line.strip() elements = line.split(':') test_file = elements[0] model_pos = line.find('damo') left_quote = line[model_pos - 1] rquote_idx = line.rfind(left_quote) model_name = line[model_pos:rquote_idx] if test_file not in test_cases: test_cases[test_file] = set() model_info = test_cases[test_file] model_info.add(model_name) if model_name not in model_cases: model_cases[model_name] = set() case_info = model_cases[model_name] case_info.add(test_file.replace('tests/', '').replace('.py', '').replace('/', '.')) return model_cases def compare_arguments_nested(print_content, arg1, arg2, rtol=1.e-3, atol=1.e-8, ignore_unknown_type=True): type1 = type(arg1) type2 = type(arg2) if type1.__name__ != type2.__name__: if print_content is not None: print(f'{print_content}, type not equal:{type1.__name__} and {type2.__name__}') return False if arg1 is None: return True elif isinstance(arg1, (int, str, bool, np.bool_, np.integer, np.str_)): if arg1 != arg2: if print_content is not None: print(f'{print_content}, arg1:{arg1}, arg2:{arg2}') return False return True elif isinstance(arg1, (float, np.floating)): if not np.isclose(arg1, arg2, rtol=rtol, atol=atol, equal_nan=True): if print_content is not None: print(f'{print_content}, arg1:{arg1}, arg2:{arg2}') return False return True elif isinstance(arg1, (tuple, list)): if len(arg1) != len(arg2): if print_content is not None: print(f'{print_content}, length is not equal:{len(arg1)}, {len(arg2)}') return False if not all([ compare_arguments_nested(None, sub_arg1, sub_arg2, rtol=rtol, atol=atol) for sub_arg1, sub_arg2 in zip(arg1, arg2) ]): if print_content is not None: print(f'{print_content}') return False return True elif isinstance(arg1, Mapping): keys1 = arg1.keys() keys2 = arg2.keys() if len(keys1) != len(keys2): if print_content is not None: print(f'{print_content}, key length is not equal:{len(keys1)}, {len(keys2)}') return False if len(set(keys1) - set(keys2)) > 0: if print_content is not None: print(f'{print_content}, key diff:{set(keys1) - set(keys2)}') return False if not all([compare_arguments_nested(None, arg1[key], arg2[key], rtol=rtol, atol=atol) for key in keys1]): if print_content is not None: print(f'{print_content}') return False return True elif isinstance(arg1, np.ndarray): arg1 = np.where(np.equal(arg1, None), np.NaN, arg1).astype(dtype=float) arg2 = np.where(np.equal(arg2, None), np.NaN, arg2).astype(dtype=float) if not all(np.isclose(arg1, arg2, rtol=rtol, atol=atol, equal_nan=True).flatten()): if print_content is not None: print(f'{print_content}') return False return True else: if ignore_unknown_type: return True else: raise ValueError(f'type not supported: {type1}') _DIST_SCRIPT_TEMPLATE = """ import ast import argparse import pickle import torch from torch import distributed as dist from modelscope.utils.torch_utils import get_dist_info import {} parser = argparse.ArgumentParser() parser.add_argument('--save_all_ranks', type=ast.literal_eval, help='save all ranks results') parser.add_argument('--save_file', type=str, help='save file') parser.add_argument('--local_rank', type=int, default=0) args = parser.parse_args() def main(): results = {}.{}({}) # module.func(params) if args.save_all_ranks: save_file = args.save_file + str(dist.get_rank()) with open(save_file, 'wb') as f: pickle.dump(results, f) else: rank, _ = get_dist_info() if rank == 0: with open(args.save_file, 'wb') as f: pickle.dump(results, f) if __name__ == '__main__': main() """ class DistributedTestCase(unittest.TestCase): """Distributed TestCase for test function with distributed mode. Examples: >>> import torch >>> from torch import distributed as dist >>> from modelscope.utils.torch_utils import init_dist >>> def _test_func(*args, **kwargs): >>> init_dist(launcher='pytorch') >>> rank = dist.get_rank() >>> if rank == 0: >>> value = torch.tensor(1.0).cuda() >>> else: >>> value = torch.tensor(2.0).cuda() >>> dist.all_reduce(value) >>> return value.cpu().numpy() >>> class DistTest(DistributedTestCase): >>> def test_function_dist(self): >>> args = () # args should be python builtin type >>> kwargs = {} # kwargs should be python builtin type >>> self.start( >>> _test_func, >>> num_gpus=2, >>> assert_callback=lambda x: self.assertEqual(x, 3.0), >>> *args, >>> **kwargs, >>> ) """ def _start(self, dist_start_cmd, func, num_gpus, assert_callback=None, save_all_ranks=False, *args, **kwargs): script_path = func.__code__.co_filename script_dir, script_name = os.path.split(script_path) script_name = os.path.splitext(script_name)[0] func_name = func.__qualname__ func_params = [] for arg in args: if isinstance(arg, str): arg = ('\'{}\''.format(arg)) func_params.append(str(arg)) for k, v in kwargs.items(): if isinstance(v, str): v = ('\'{}\''.format(v)) func_params.append('{}={}'.format(k, v)) func_params = ','.join(func_params).strip(',') tmp_run_file = tempfile.NamedTemporaryFile(suffix='.py').name tmp_res_file = tempfile.NamedTemporaryFile(suffix='.pkl').name with open(tmp_run_file, 'w') as f: print('save temporary run file to : {}'.format(tmp_run_file)) print('save results to : {}'.format(tmp_res_file)) run_file_content = _DIST_SCRIPT_TEMPLATE.format(script_name, script_name, func_name, func_params) f.write(run_file_content) tmp_res_files = [] if save_all_ranks: for i in range(num_gpus): tmp_res_files.append(tmp_res_file + str(i)) else: tmp_res_files = [tmp_res_file] self.addCleanup(self.clean_tmp, [tmp_run_file] + tmp_res_files) tmp_env = copy.deepcopy(os.environ) tmp_env['PYTHONPATH'] = ':'.join((tmp_env.get('PYTHONPATH', ''), script_dir)).lstrip(':') # avoid distributed test hang tmp_env['NCCL_P2P_DISABLE'] = '1' script_params = '--save_all_ranks=%s --save_file=%s' % (save_all_ranks, tmp_res_file) script_cmd = '%s %s %s' % (dist_start_cmd, tmp_run_file, script_params) print('script command: %s' % script_cmd) res = subprocess.call(script_cmd, shell=True, env=tmp_env) script_res = [] for res_file in tmp_res_files: with open(res_file, 'rb') as f: script_res.append(pickle.load(f)) if not save_all_ranks: script_res = script_res[0] if assert_callback: assert_callback(script_res) self.assertEqual(res, 0, msg='The test function ``{}`` in ``{}`` run failed!'.format(func_name, script_name)) return script_res def start(self, func, num_gpus, assert_callback=None, save_all_ranks=False, *args, **kwargs): from .torch_utils import _find_free_port ip = socket.gethostbyname(socket.gethostname()) if 'dist_start_cmd' in kwargs: dist_start_cmd = kwargs.pop('dist_start_cmd') else: dist_start_cmd = '%s -m torch.distributed.launch --nproc_per_node=%d ' \ '--master_addr=\'%s\' --master_port=%s' % (sys.executable, num_gpus, ip, _find_free_port()) return self._start( dist_start_cmd=dist_start_cmd, func=func, num_gpus=num_gpus, assert_callback=assert_callback, save_all_ranks=save_all_ranks, *args, **kwargs) def clean_tmp(self, tmp_file_list): for file in tmp_file_list: if os.path.exists(file): if os.path.isdir(file): shutil.rmtree(file) else: os.remove(file)