# Copyright (c) Alibaba, Inc. and its affiliates. import os os.environ['CUDA_VISIBLE_DEVICES'] = '0' # os.environ['SWIFT_DEBUG'] = '1' def infer(engine: 'InferEngine', infer_request: 'InferRequest'): stop = [engine.default_template.agent_template.keyword.observation] # compat react_en request_config = RequestConfig(max_tokens=512, temperature=0, stop=stop) resp_list = engine.infer([infer_request], request_config) query = infer_request.messages[0]['content'] response = resp_list[0].choices[0].message.content print(f'query: {query}') print(f'response: {response}') print(f'tool_calls: {resp_list[0].choices[0].message.tool_calls}') tool = '{"temperature": 32, "condition": "Sunny", "humidity": 50}' print(f'tool_response: {tool}') infer_request.messages += [{'role': 'assistant', 'content': response}, {'role': 'tool', 'content': tool}] resp_list = engine.infer([infer_request], request_config) response2 = resp_list[0].choices[0].message.content print(f'response2: {response2}') def infer_stream(engine: 'InferEngine', infer_request: 'InferRequest'): stop = [engine.default_template.agent_template.keyword.observation] request_config = RequestConfig(max_tokens=512, temperature=0, stream=True, stop=stop) gen_list = engine.infer([infer_request], request_config) query = infer_request.messages[0]['content'] response = '' print(f'query: {query}\nresponse: ', end='') for resp in gen_list[0]: if resp is None: continue delta = resp.choices[0].delta.content response += delta print(delta, end='', flush=True) print() print(f'tool_calls: {resp.choices[0].delta.tool_calls}') tool = '{"temperature": 32, "condition": "Sunny", "humidity": 50}' print(f'tool_response: {tool}\nresponse2: ', end='') infer_request.messages += [{'role': 'assistant', 'content': response}, {'role': 'tool', 'content': tool}] gen_list = engine.infer([infer_request], request_config) for resp in gen_list[0]: if resp is None: continue print(resp.choices[0].delta.content, end='', flush=True) print() def get_infer_request(): return InferRequest( messages=[{ 'role': 'user', 'content': "How's the weather in Beijing today?" }], tools=[{ 'name': 'get_current_weather', 'description': 'Get the current weather in a given location', 'parameters': { 'type': 'object', 'properties': { 'location': { 'type': 'string', 'description': 'The city and state, e.g. San Francisco, CA' }, 'unit': { 'type': 'string', 'enum': ['celsius', 'fahrenheit'] } }, 'required': ['location'] } }]) def infer_continue_generate(engine): # Continue generating after the assistant message. infer_request = InferRequest(messages=[{ 'role': 'user', 'content': 'How is the weather today?' }, { 'role': 'assistant', 'content': 'It is sunny today, ' }, { 'role': 'assistant', 'content': None }]) request_config = RequestConfig(max_tokens=512, temperature=0) resp_list = engine.infer([infer_request], request_config) response = resp_list[0].choices[0].message.content print(f'response: {response}') if __name__ == '__main__': from swift.llm import InferEngine, InferRequest, PtEngine, RequestConfig from swift.plugin import agent_templates model = 'Qwen/Qwen2.5-1.5B-Instruct' infer_backend = 'pt' if infer_backend == 'pt': engine = PtEngine(model, max_batch_size=64) elif infer_backend == 'vllm': from swift.llm import VllmEngine engine = VllmEngine(model, max_model_len=8192) elif infer_backend == 'lmdeploy': from swift.llm import LmdeployEngine engine = LmdeployEngine(model) # agent_template = agent_templates['hermes']() # react_en/qwen_en/qwen_en_parallel # engine.default_template.agent_template = agent_template infer(engine, get_infer_request()) infer_stream(engine, get_infer_request()) # infer_continue_generate(engine)